HDU 5444 Elven Postman(最优二叉树) 2015多校

本文探讨了一个关于最优二叉树构建的问题,并将其应用于邮箱递送场景。通过给定的房间序列,理解如何构建最优二叉树并解决递送问题。

Elven Postman

Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 968    Accepted Submission(s): 535


Problem Description
Elves are very peculiar creatures. As we all know, they can live for a very long time and their magical prowess are not something to be taken lightly. Also, they live on trees. However, there is something about them you may not know. Although delivering stuffs through magical teleportation is extremely convenient (much like emails). They still sometimes prefer other more “traditional” methods.

So, as a elven postman, it is crucial to understand how to deliver the mail to the correct room of the tree. The elven tree always branches into no more than two paths upon intersection, either in the east direction or the west. It coincidentally looks awfully like a binary tree we human computer scientist know. Not only that, when numbering the rooms, they always number the room number from the east-most position to the west. For rooms in the east are usually more preferable and more expensive due to they having the privilege to see the sunrise, which matters a lot in elven culture.

Anyways, the elves usually wrote down all the rooms in a sequence at the root of the tree so that the postman may know how to deliver the mail. The sequence is written as follows, it will go straight to visit the east-most room and write down every room it encountered along the way. After the first room is reached, it will then go to the next unvisited east-most room, writing down every unvisited room on the way as well until all rooms are visited.

Your task is to determine how to reach a certain room given the sequence written on the root.

For instance, the sequence 2, 1, 4, 3 would be written on the root of the following tree.

 

Input
First you are given an integer  T(T10)  indicating the number of test cases.

For each test case, there is a number  n(n1000)  on a line representing the number of rooms in this tree.  n  integers representing the sequence written at the root follow, respectively  a1,...,an  where  a1,...,an{1,...,n} .

On the next line, there is a number  q  representing the number of mails to be sent. After that, there will be  q  integers  x1,...,xq  indicating the destination room number of each mail.
 

Output
For each query, output a sequence of move ( E  or  W ) the postman needs to make to deliver the mail. For that  E  means that the postman should move up the eastern branch and  W  the western one. If the destination is on the root, just output a blank line would suffice.

Note that for simplicity, we assume the postman always starts from the root regardless of the room he had just visited.
 

Sample Input
  
2 4 2 1 4 3 3 1 2 3 6 6 5 4 3 2 1 1 1
 

Sample Output
  
E WE EEEEE
 

题意:输入n和n个点,q和q组询问,以这n个点的顺序建立最优二叉树,即对于根节点,其左子树大于根节点,右子树小于根节点。对于每组询问,输出从根节点到当前询问节点的路径,左子树输出W,右子树输出E。(ps:其实左右无所谓了,清楚大小就行)

分析:裸的最优二叉树→_→,妈呀,比赛的时候纠结了半天,还特么用线段树的形式写了一发,傻逼啊!

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cctype>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <sstream>
#include <fstream>
#define debug "output for debug\n"
#define pi (acos(-1.0))
#define eps (1e-8)
#define inf 0x3f3f3f3f
#define ll long long int
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
using namespace std;
const int mod = 1000000007;
const int Max = 150005;
int t,n,m;
int a[1005];
int b[1005];
struct node
{
    int v;
    node *l,*r;
};
void solve(node *root,int k)
{
    //puts("asdf");
    if(root->v==k||root==NULL)
    {
        printf("\n");
        return;
    }
    else if(k<root->v)
    {
        printf("E");
        return solve(root->l,k);
    }
    else
    {
        printf("W");
        return solve(root->r,k);
    }
}
node *Insert(node *root,int k)
{
    if(root==NULL)
    {
        root=new node;
        root->v=k;
        root->l=root->r=NULL;
        return root;
    }
    if(k<root->v)
        root->l=Insert(root->l,k);
    else
        root->r=Insert(root->r,k);
    return root;
}
node *Creat(int *w,int e)
{
    node *T=NULL;
    for(int i=0; i<n; i++)
        T=Insert(T,w[i]);
    return T;
}
int main()
{
    cin>>t;
    while(t--)
    {
        scanf("%d",&n);
        for(int i=0; i<n; i++)
            scanf("%d",&a[i]);
        scanf("%d",&m);
        for(int i=0; i<m; i++)
            scanf("%d",&b[i]);
        //puts("ssss");
        node *root=Creat(a,n);
        //puts("ddddd");
        node *rot=NULL;
        //puts("aaaaa");
        for(int i=0;i<m;i++)
        {
            rot=root;
            //puts("dadssd");
            solve(rot,b[i]);
        }
    }
    return 0;
}

题目链接: 点击打开链接


基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值