【机器学习】集成学习--随机森林(Random Forest)

1. 概述

RF = 决策树 + Bagging + 随机属性选择

在这里插入图片描述

2. 算法流程

  1. 样本的随机:从样本集中用bagging的方式,随机选择n个样本。
  2. 特征的随机:从所有属性d中随机选择k个属性(k<d),然后从k个属性中选择最佳分割属性作为节点建立CART决策树。
  3. 重复以上两个步骤m次,建立m课CART决策树。
  4. 这m课CART决策树形成随机森林,通过投票表决结果,决定数据属于哪一类。

3. 代码实现

注:数据集在文章末尾

from sklearn import tree
from sklearn.model_selection import trai
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值