题目描述
Farmer John has been having trouble making his plants grow, and needs your help to water them properly. You are given the locations of N raindrops (1 <= N <= 100,000) in the 2D plane, where y represents vertical height of the drop, and x represents its location over a 1D number line:
;
Each drop falls downward (towards the x axis) at a rate of 1 unit per second. You would like to place Farmer John's flowerpot of width W somewhere along the x axis so that the difference in time between the first raindrop to hit the flowerpot and the last raindrop to hit the flowerpot is at least some amount D (so that the flowers in the pot receive plenty of water). A drop of water that lands just on the edge of the flowerpot counts as hitting the flowerpot.
Given the value of D and the locations of the N raindrops, please compute the minimum possible value of W.
老板需要你帮忙浇花。给出N滴水的坐标,y表示水滴的高度,x表示它下落到x轴的位置。
每滴水以每秒1个单位长度的速度下落。你需要把花盆放在x轴上的某个位置,使得从被花盆接着的第1滴水开始,到被花盆接着的最后1滴水结束,之间的时间差至少为D。
我们认为,只要水滴落到x轴上,与花盆的边沿对齐,就认为被接住。给出N滴水的坐标和D的大小,请算出最小的花盆的宽度W。
输入输出格式
输入格式:第一行2个整数 N 和 D。
第2.. N+1行每行2个整数,表示水滴的坐标(x,y)。
输出格式:仅一行1个整数,表示最小的花盆的宽度。如果无法构造出足够宽的花盆,使得在D单位的时间接住满足要求的水滴,则输出-1。
输入输出样例
4 5 6 3 2 4 4 10 12 15
2
说明
【样例解释】
有4滴水, (6,3), (2,4), (4,10), (12,15).水滴必须用至少5秒时间落入花盆。花盆的宽度为2是必须且足够的。把花盆放在x=4..6的位置,它可以接到1和3水滴, 之间的时间差为10-3 = 7满足条件。
【数据范围】
40%的数据:1 ≤ N ≤ 1000,1 ≤ D ≤ 2000;
100%的数据:1 ≤ N ≤ 100000,1 ≤ D ≤ 1000000,0≤x,y≤106。
单调队列。
枚举左端点,向后扫右端点,同时用两个单调队列来维护区间中y的最大最小值,直到y满足条件为止。
——BY 牌爷 chaijing
#include<algorithm>
#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int n,d,mxy,mny,ans=1e9+7,lef[N],q_min[N],q_max[N];
struct node
{
int x,y;
}a[N];
bool cmp(node c,node d)
{
return c.x<d.x;
}
int main()
{
scanf("%d%d",&n,&d);
mny=1e9+7;
for(int i=1;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].y),mxy=max(mxy,a[i].y),mny=min(mny,a[i].y);
sort(a+1,a+n+1,cmp);
if(mxy-mny<d)
{
printf("-1\n");
return 0;
}
int h_min=1,t_min=0,h_max=1,t_max=0,j=0;
for(int i=1;i<=n;i++)
{
while(a[q_max[h_max]].y-a[q_min[h_min]].y<d)
{
j++;
if(j>n)
{
printf("%d\n",ans);
return 0;
}
while(h_max<=t_max&&a[j].y>=a[q_max[t_max]].y)
t_max--;
q_max[++t_max]=j;
while(h_min<=t_min&&a[j].y<=a[q_min[t_min]].y)
t_min--;
q_min[++t_min]=j;
}
ans=min(ans,a[j].x-a[i].x);
if(q_min[h_min]==i)
h_min++;
if(q_max[h_max]==i)
h_max++;
}
printf("%d\n",ans);
return 0;
}