The binomial coefficient C(m, n) is defined as
C(m, n) = m!
(m − n)! n!
Given four natural numbers p, q, r, and s, compute the the result of dividing C(p, q) by C(r, s).
Input
Input consists of a sequence of lines. Each line contains four non-negative integer numbers giving values
for p, q, r, and s, respectively, separated by a single space. All the numbers will be smaller than 10,000
with p ≥ q and r ≥ s.
Output
For each line of input, print a single line containing a real number with 5 digits of precision in the fraction,
giving the number as described above. You may assume the result is not greater than 100,000,000.
Sample Input
10 5 14 9
93 45 84 59
145 95 143 92
995 487 996 488
2000 1000 1999 999
9998 4999 9996 4998
Sample Output
0.12587
505606.46055
1.28223
0.48996
2.00000
3.99960
用唯一分解定理,记录次数,最后求出答案。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int N=10005;
int p,q,r,s,cnt,pri[N],c[N];
bool vis[N];
double ans;
void add(int x,int y)
{
for(int i=1;i<=x;i++)
{
int tmp=i;
for(int j=1;j<=cnt&&y!=0;j++)
while(tmp%pri[j]==0)
{
tmp/=pri[j];
c[j]+=y;
}
}
}
void euler()
{
vis[1]=1;
for(int i=2;i<=10000;i++)
{
if(!vis[i])
pri[++cnt]=i;
for(int j=1;j<=cnt&&pri[j]*i<=10000;j++)
{
vis[i*pri[j]]=1;
if(i%pri[j]==0)
break;
}
}
}
int main()
{
euler();
while(scanf("%d%d%d%d",&p,&q,&r,&s)==4)
{
ans=1;
memset(c,0,sizeof(c));
add(p,1);
add(p-q,-1);
add(q,-1);
add(r,-1);
add(r-s,1);
add(s,1);
for(int i=1;i<=cnt;i++)
ans*=pow(pri[i],c[i]);
printf("%.5f\n",ans);
}
return 0;
}