HDU - 3342 floyd判环

本文介绍了一种通过Floyd算法来判断给定有向图中是否存在非法环的方法,并提供了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

ACM-DIY is a large QQ group where many excellent acmers get together. It is so harmonious that just like a big family. Every day,many “holy cows” like HH, hh, AC, ZT, lcc, BF, Qinz and so on chat on-line to exchange their ideas. When someone has questions, many warm-hearted cows like Lost will come to help. Then the one being helped will call Lost “master”, and Lost will have a nice “prentice”. By and by, there are many pairs of “master and prentice”. But then problem occurs: there are too many masters and too many prentices, how can we know whether it is legal or not?

We all know a master can have many prentices and a prentice may have a lot of masters too, it’s legal. Nevertheless,some cows are not so honest, they hold illegal relationship. Take HH and 3xian for instant, HH is 3xian’s master and, at the same time, 3xian is HH’s master,which is quite illegal! To avoid this,please help us to judge whether their relationship is legal or not.

Please note that the “master and prentice” relation is transitive. It means that if A is B’s master ans B is C’s master, then A is C’s master.
Input
The input consists of several test cases. For each case, the first line contains two integers, N (members to be tested) and M (relationships to be tested)(2 <= N, M <= 100). Then M lines follow, each contains a pair of (x, y) which means x is y’s master and y is x’s prentice. The input is terminated by N = 0.
TO MAKE IT SIMPLE, we give every one a number (0, 1, 2,…, N-1). We use their numbers instead of their names.
Output
For each test case, print in one line the judgement of the messy relationship.
If it is legal, output “YES”, otherwise “NO”.

题意:

给一个有向图,让你去判断是否存在环;

思路:

所谓有环就是存在两个点a1,a2,a1->a2和a2->a1,都可通,
那么就是进行一次floyd算法,每次更新dp[i][j],的时候都去判断一下dp[j][i]是否不为inf,如果有就是存在环,否则不存在环。
wa点的话,强说一个是i==j时当然要跳过,一个是maps[i][i]=0;(这个是因为,就算不是0一样可以得到最短路,但是会有情况判不到)。

代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define inf 0x3f3f3f3f
using namespace std;
int n,m;
int maps[110][110];
bool floyd()
{
    for(int k=0;k<n;k++)
    {
        for(int i=0;i<n;i++)
        {
            if(maps[i][k]==inf)
                continue;
            for(int j=0;j<n;j++)
            {
                if(i==j||maps[k][j]==inf)
                    continue;
                if(maps[i][j]>maps[i][k]+maps[k][j])
                    maps[i][j]=maps[i][k]+maps[k][j];
                if(maps[j][i]!=inf)
                    return false;
            }
        }
    }
    return true;
}
int main()
{
    while(scanf("%d%d",&n,&m),n)
    {
        memset(maps,inf,sizeof(maps));
        int x,y;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d",&x,&y);
            maps[x][y]=1;
        }
        for(int i=0;i<n;i++)
            maps[i][i]=0;
        if(floyd())
            printf("YES\n");
        else
            printf("NO\n");
    }
    return 0;
}

P.S.迷之切水题日常orz

### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的大收益或者小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值