webassembly003 MINISIT mnist/convert-h5-to-ggml.py + ggml format

数据结构

# Convert MNIS h5 transformer model to ggml format
#
# Load the (state_dict) saved model using PyTorch
# Iterate over all variables and write them to a binary file.
#
# For each variable, write the following:
#   - Number of dimensions (int)
#   - Name length (int)
#   - Dimensions (int[n_dims])
#   - Name (char[name_length])
#   - Data (float[n_dims])
#
# At the start of the ggml file we write the model parameters
  • 这个简单的版本没有Name的部分,导出的数据最终如下
ggml-model-f32.bin 注释
0x67676d6c magic number (filesignatures)
2 len(fc1.weight.shape)
784 fc1.weight.shape = (500, 784)
500 fc1.weight.shape = (500, 784)
data fc1.weight
1 len(fc1.bias.shape)
500 fc1.bias.shape = (500, )
data fc1.bias
2 len(fc2.weight.shape)
500 fc1.weight.shape = (10, 500)
10 fc1.weight.shape =(10, 500)
data fc2.weight
1 len(fc2.bias.shape)
10 fc2.bias.shape =(10,)
data fc1.bias

代码注释

import sys
import struct
import json
import numpy as np
import re

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable

# 检查是否提供了正确数量的命令行参数
if len(sys.argv) != 2:
    print("Usage: convert-h5-to-ggml.py model\n")
    sys.exit(1)

# 获取输入h5模型和输出ggml模型的文件路径
state_dict_file = sys.argv[1]
fname_out = "models/mnist/ggml-model-f32.bin"

# 加载PyTorch保存的state_dict模型
state_dict = torch.load(state_dict_file, map_location=torch.device('cpu'))

# 以写入模式打开输出二进制文件
fout = open(fname_out, "wb")

# 在文件中写入魔术数字'ggml',以十六进制格式作为文件标识符
# 使用 Python 的 struct 模块将整数 0x67676d6c 打包为二进制数据的操作。在这里,"i" 表示使用整数格式进行打包。
fout.write(struct.pack("i", 0x67676d6c))  # magic: ggml in hex 

# 迭代state_dict中的所有变量
for name in state_dict.keys():
    # 从变量中提取数据并将其转换为NumPy数组
    data = state_dict[name].squeeze().numpy()
    print("Processing variable: " + name + " with shape: ", data.shape) 
    n_dims = len(data.shape);
   
    # 将变量的维度数量写入二进制文件
    fout.write(struct.pack("i", n_dims))
    
    # 将数据转换为float32并将维度写入二进制文件
    data = data.astype(np.float32)
    for i in range(n_dims):
        fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))

    # 将数据写入二进制文件
    data.tofile(fout)

# 关闭二进制文件
fout.close()

print("Done. Output file: " + fname_out)
print("")

tofile()

struct.pack

输出

$:~/ggml/ggml/examples/mnist$ python3 ./convert-h5-to-ggml.py 
./models/mnist/mnist_model.state_dictOrderedDict([('fc1.weight', tensor([[ 0.0130,  0.0034, -0.0287,  ..., -0.0268, -0.0352, -0.0056],
        [-0.0134,  0.0077, -0.0028,  ...,  0.0356,  0.0143, -0.0107],
        [-0.0329,  0.0154, -0.0167,  ...,  0.0155,  0.0127, -0.0309],
        ...,
        [-0.0216, -0.0302,  0.0085,  ...,  0.0301,  0.0073,  0.0153],
        [ 0.0289,  0.0181,  0.0326,  ...,  0.0107, -0.0314, -0.0349],
        [ 0.0273,  0.0127
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值