半正交矩阵wiki
如 M = [ 1 0 ] , 满 足 M t M = I m , m ( A T A = I or A A T = I . ) [ 1 0 ] ∗ [ 1 0 ] = 1 = I m , m o r t h o g o n a l m a t r i x [ a b c d e f g h i ] = [ A 2 ∗ 3 正 交 阵 的 一 半 g h i ] ⇒ A ∗ A T = I 2 ∗ 2 如M=\begin{bmatrix}1\\0\end{bmatrix},满足M^tM=I_{m,m}(A^T A = I \text{ or } A A^T = I. \,)\\ \begin{bmatrix}1&0\end{bmatrix}*\begin{bmatrix}1\\0\end{bmatrix}=1=I_{m,m}\\ orthogonal \ matrix\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix} = \begin{bmatrix} \ & {A_{2*3}}_{正交阵的一半}\\g&h&i\end{bmatrix} \Rightarrow \\ A*A^T=I_{2*2} 如M=[10],满足MtM=Im,m(ATA=I or AAT=I.)[10]∗[10]=1=Im,morthogonal matrix⎣⎡adgbehcfi⎦⎤=[ gA2∗3正交阵的一半hi]⇒A∗AT=I2∗2
1.半正交矩阵是满秩的
2.
∥
M
x
∥
2
=
∥
x
∥
2
\|Mx\|_2 = \|x\|_2
∥Mx∥2=∥x∥2
pdf:Maths for Signals and Systems Linear Algebra in Engineering
本文探讨了矩阵中的不同正交性类型,包括正交矩阵、准正交矩阵和半正交矩阵。半正交矩阵满足特定的性质,如保持向量的范数不变,并在特定条件下等价于正交矩阵。此外,文章还涉及了完全正定矩阵等相关概念,并研究了这些矩阵的构造和性质。
2273

被折叠的 条评论
为什么被折叠?



