例三:The rotation group SO(3), its Lie algebra so(3), and the vector space R^3

该博客探讨了3×3旋转矩阵的旋转群SO(3),其李代数so(3)以及与三维向量空间R^3的联系。正交条件RtR=I定义了SO(3),通过时间导数揭示了RtR˙=[ω]×,其中[ω]×是斜对称矩阵,表示角速度向量ω。李代数so(3)具有3个自由度,可以与R^3通过线性映射相互表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Example 3:The rotation group SO(3), its Lie algebra so(3), and the vector space R^3

In the rotation group SO(3), of 3×3 rotation matrices R, we have the orthogonality condition R t R R^tR RtR = I. The tangent space may be found by taking the time derivative of this constraint, that is R t R ˙ + R ˙ t R = 0 R^t\dot R + \dot R^tR = 0 RtR˙+R˙tR=0, which we rearrange as
R t R ˙ = − ( R t R ˙ ) t R^t\dot R =-( R^t\dot R)^t RtR˙=(RtR˙)t
This expression reveals that R t R ˙ R^t\dot R RtR˙ is a skew-symmetric matrix (the negative of its transpose). Skew-symmetric matrices are often noted [ ω ] × [ω]_× [ω]× and have the form

[ ω ] × = [ 0 − ω x ω y ω x 0 − ω x − ω y ω x 0 ] [ω]_×=\begin{bmatrix}0&-\omega_x&\omega_y\\\omega_x&0&-\omega_x\\-\omega_y&\omega_x&0\end{bmatrix} [ω]×=0ωxωyωx0ωxωyωx0
This gives R t R ˙ = [ ω ] × R^t\dot R= [ω]_× RtR˙=[ω]×. When R = I we have
R ˙ = [ ω ] × , \dot R = [ω]_× , R˙=[ω]×,
that is, [ ω ] × [ω]_× [ω]× is in the Lie algebra of SO(3), which we name so(3). Since [ ω ] × [ω]_× [ω]× ∈ so(3) has 3 DoF, the
dimension of SO(3) is m = 3. The Lie algebra is a vector space whose elements can be decomposed into
[ ω ] × = ω x E x + ω y E y + ω z E z [ω]_× = ω_xE_x + ω_yE_y + ω_zE_z [ω]×=ωxEx+ωyEy+ωzEz
w i t h   E x = [ 0 0 0 0 0 − 1 0 1 0 ] , E y = [ 0 0 1 0 0 0 − 1 0 0 ] , E z = [ 0 − 1 0 1 0 0 0 0 0 ] with\ E_x=\begin{bmatrix}0&0&0\\0&0&-1\\0&1&0\end{bmatrix},E_y=\begin{bmatrix}0&0&1\\0&0&0\\-1&0&0\end{bmatrix},E_z=\begin{bmatrix}0&-1&0\\1&0&0\\0&0&0\end{bmatrix} with Ex=000001010,Ey=001000100Ez=010100000
the generators of so(3), and where ω = (ωx, ωy, ωz) ∈ R3 is the vector of angular velocities. The one-to-one linear relation above allows us to identify so(3) with R3 —we write s o ( 3 ) ≃ R 3 so(3) \simeq R^3 so(3)R3. We pass from so(3) to R3 and viceversa using the linear operators hat and vee,


在3×3旋转矩阵R的旋转群SO(3)中,我们有正交条件 R t R = I R^tR= I RtR=I。切线空间可以通过对该约束的时间导数求出,即 R t R ˙ + R ˙ t R = 0 R^t\dot R + \dot R^tR = 0 RtR˙+R˙tR=0,我们将其重新排列为
R t R ˙ = − ( R t R ˙ ) t R^t\dot R =-( R^t\dot R)^t RtR˙=(RtR˙)t
R t R ˙ R^t\dot R RtR˙ 是一个偏对称矩阵(其转置的负数)。 斜对称矩阵通常记为 [ ω ] × [ω]_× [ω]×并具有以下形式
[ ω ] × = [ 0 − ω x ω y ω x 0 − ω x − ω y ω x 0 ] [ω]_×=\begin{bmatrix}0&-\omega_x&\omega_y\\\omega_x&0&-\omega_x\\-\omega_y&\omega_x&0\end{bmatrix} [ω]×=0ωxωyωx0ωxωyωx0
也就是 R t R ˙ = [ ω ] × R^t\dot R= [ω]_× RtR˙=[ω]×. 当 R = I 时
R ˙ = [ ω ] × , \dot R = [ω]_× , R˙=[ω]×,

也就是说, [ ω ] × [ω]_× [ω]× 在 SO(3) 的李代数中,我们将其命名为 so(3)。 由于 [ ω ] × [ω]_× [ω]× ∈ so(3) 有 3 个自由度,所以SO(3) 的维数是 m = 3。李代数是一个向量空间,其元素可以分解为
[ ω ] × = ω x E x + ω y E y + ω z E z [ω]_× = ω_xE_x + ω_yE_y + ω_zE_z [ω]×=ωxEx+ωyEy+ωzEz
其 中 E x = [ 0 0 0 0 0 − 1 0 1 0 ] , E y = [ 0 0 1 0 0 0 − 1 0 0 ] , E z = [ 0 − 1 0 1 0 0 0 0 0 ] 是 s o ( 3 ) 的 基 其中E_x=\begin{bmatrix}0&0&0\\0&0&-1\\0&1&0\end{bmatrix},E_y=\begin{bmatrix}0&0&1\\0&0&0\\-1&0&0\end{bmatrix},E_z=\begin{bmatrix}0&-1&0\\1&0&0\\0&0&0\end{bmatrix}是so(3)的基 Ex=000001010,Ey=001000100Ez=010100000so(3)
角速度的向量ω = (ωx, ωy, ωz) ∈ R3。存在so(3) 与 R3间的一一线性关系,即 s o ( 3 ) ≃ R 3 so(3) \simeq R^3 so(3)R3. 使用线性算子hat 和 vee再两个空间转换。
H a t : R 3 → s o ( 3 ) ; ω → ω ∧ = [ ω ] × V e e : s o ( 3 ) → R 3 ; [ ω ] × → [ ω ] × ∨ = ω . Hat : R3 → so(3); ω → ω^∧ = [ω]_×\\ Vee : so(3) → R3; [ω]_× → [ω]^∨_× = ω . Hat:R3so(3);ωω=[ω]×Vee:so(3)R3;[ω]×[ω]×=ω.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值