Example 3:The rotation group SO(3), its Lie algebra so(3), and the vector space R^3
In the rotation group SO(3), of 3×3 rotation matrices R, we have the orthogonality condition
R
t
R
R^tR
RtR = I. The tangent space may be found by taking the time derivative of this constraint, that is
R
t
R
˙
+
R
˙
t
R
=
0
R^t\dot R + \dot R^tR = 0
RtR˙+R˙tR=0, which we rearrange as
R
t
R
˙
=
−
(
R
t
R
˙
)
t
R^t\dot R =-( R^t\dot R)^t
RtR˙=−(RtR˙)t
This expression reveals that
R
t
R
˙
R^t\dot R
RtR˙ is a skew-symmetric matrix (the negative of its transpose). Skew-symmetric matrices are often noted
[
ω
]
×
[ω]_×
[ω]× and have the form
[
ω
]
×
=
[
0
−
ω
x
ω
y
ω
x
0
−
ω
x
−
ω
y
ω
x
0
]
[ω]_×=\begin{bmatrix}0&-\omega_x&\omega_y\\\omega_x&0&-\omega_x\\-\omega_y&\omega_x&0\end{bmatrix}
[ω]×=⎣⎡0ωx−ωy−ωx0ωxωy−ωx0⎦⎤
This gives
R
t
R
˙
=
[
ω
]
×
R^t\dot R= [ω]_×
RtR˙=[ω]×. When R = I we have
R
˙
=
[
ω
]
×
,
\dot R = [ω]_× ,
R˙=[ω]×,
that is,
[
ω
]
×
[ω]_×
[ω]× is in the Lie algebra of SO(3), which we name so(3). Since
[
ω
]
×
[ω]_×
[ω]× ∈ so(3) has 3 DoF, the
dimension of SO(3) is m = 3. The Lie algebra is a vector space whose elements can be decomposed into
[
ω
]
×
=
ω
x
E
x
+
ω
y
E
y
+
ω
z
E
z
[ω]_× = ω_xE_x + ω_yE_y + ω_zE_z
[ω]×=ωxEx+ωyEy+ωzEz
w
i
t
h
E
x
=
[
0
0
0
0
0
−
1
0
1
0
]
,
E
y
=
[
0
0
1
0
0
0
−
1
0
0
]
,
E
z
=
[
0
−
1
0
1
0
0
0
0
0
]
with\ E_x=\begin{bmatrix}0&0&0\\0&0&-1\\0&1&0\end{bmatrix},E_y=\begin{bmatrix}0&0&1\\0&0&0\\-1&0&0\end{bmatrix},E_z=\begin{bmatrix}0&-1&0\\1&0&0\\0&0&0\end{bmatrix}
with Ex=⎣⎡0000010−10⎦⎤,Ey=⎣⎡00−1000100⎦⎤,Ez=⎣⎡010−100000⎦⎤
the generators of so(3), and where ω = (ωx, ωy, ωz) ∈ R3 is the vector of angular velocities. The one-to-one linear relation above allows us to identify so(3) with R3 —we write
s
o
(
3
)
≃
R
3
so(3) \simeq R^3
so(3)≃R3. We pass from so(3) to R3 and viceversa using the linear operators hat and vee,
在3×3旋转矩阵R的旋转群SO(3)中,我们有正交条件
R
t
R
=
I
R^tR= I
RtR=I。切线空间可以通过对该约束的时间导数求出,即
R
t
R
˙
+
R
˙
t
R
=
0
R^t\dot R + \dot R^tR = 0
RtR˙+R˙tR=0,我们将其重新排列为
R
t
R
˙
=
−
(
R
t
R
˙
)
t
R^t\dot R =-( R^t\dot R)^t
RtR˙=−(RtR˙)t
即
R
t
R
˙
R^t\dot R
RtR˙ 是一个偏对称矩阵(其转置的负数)。 斜对称矩阵通常记为
[
ω
]
×
[ω]_×
[ω]×并具有以下形式
[
ω
]
×
=
[
0
−
ω
x
ω
y
ω
x
0
−
ω
x
−
ω
y
ω
x
0
]
[ω]_×=\begin{bmatrix}0&-\omega_x&\omega_y\\\omega_x&0&-\omega_x\\-\omega_y&\omega_x&0\end{bmatrix}
[ω]×=⎣⎡0ωx−ωy−ωx0ωxωy−ωx0⎦⎤
也就是
R
t
R
˙
=
[
ω
]
×
R^t\dot R= [ω]_×
RtR˙=[ω]×. 当 R = I 时
R
˙
=
[
ω
]
×
,
\dot R = [ω]_× ,
R˙=[ω]×,
也就是说,
[
ω
]
×
[ω]_×
[ω]× 在 SO(3) 的李代数中,我们将其命名为 so(3)。 由于
[
ω
]
×
[ω]_×
[ω]× ∈ so(3) 有 3 个自由度,所以SO(3) 的维数是 m = 3。李代数是一个向量空间,其元素可以分解为
[
ω
]
×
=
ω
x
E
x
+
ω
y
E
y
+
ω
z
E
z
[ω]_× = ω_xE_x + ω_yE_y + ω_zE_z
[ω]×=ωxEx+ωyEy+ωzEz
其
中
E
x
=
[
0
0
0
0
0
−
1
0
1
0
]
,
E
y
=
[
0
0
1
0
0
0
−
1
0
0
]
,
E
z
=
[
0
−
1
0
1
0
0
0
0
0
]
是
s
o
(
3
)
的
基
其中E_x=\begin{bmatrix}0&0&0\\0&0&-1\\0&1&0\end{bmatrix},E_y=\begin{bmatrix}0&0&1\\0&0&0\\-1&0&0\end{bmatrix},E_z=\begin{bmatrix}0&-1&0\\1&0&0\\0&0&0\end{bmatrix}是so(3)的基
其中Ex=⎣⎡0000010−10⎦⎤,Ey=⎣⎡00−1000100⎦⎤,Ez=⎣⎡010−100000⎦⎤是so(3)的基
角速度的向量ω = (ωx, ωy, ωz) ∈ R3。存在so(3) 与 R3间的一一线性关系,即
s
o
(
3
)
≃
R
3
so(3) \simeq R^3
so(3)≃R3. 使用线性算子hat 和 vee再两个空间转换。
H
a
t
:
R
3
→
s
o
(
3
)
;
ω
→
ω
∧
=
[
ω
]
×
V
e
e
:
s
o
(
3
)
→
R
3
;
[
ω
]
×
→
[
ω
]
×
∨
=
ω
.
Hat : R3 → so(3); ω → ω^∧ = [ω]_×\\ Vee : so(3) → R3; [ω]_× → [ω]^∨_× = ω .
Hat:R3→so(3);ω→ω∧=[ω]×Vee:so(3)→R3;[ω]×→[ω]×∨=ω.