提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
二叉树的遍历代码是动态规划和回溯算法的祖宗。 动态规划 的关键在于明确递归函数的定义,把用子问题的结果推导出大问题的结果。 回溯算法 就简单粗暴多了,就是单纯的遍历回溯树。
一、力扣951. 翻转等价二叉树
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean flipEquiv(TreeNode root1, TreeNode root2) {
if(root1 == null && root2 == null){
return true;
}
if(root1 == null || root2 == null){
return false;
}
if(root1.val != root2.val){
return false;
}
return (flipEquiv(root1.left,root2.left) && flipEquiv(root1.right,root2.right)) || (
flipEquiv(root1.left,root2.right) && flipEquiv(root1.right,root2.left)
);
}
}
二、力扣124. 二叉树中的最大路径和
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int res = Integer.MIN_VALUE;
public int maxPathSum(TreeNode root) {
fun(root);
return res;
}
public int fun(TreeNode root){
if(root == null){
return 0;
}
int l = Math.max(0,fun(root.left));
int r = Math.max(0,fun(root.right));
res = Math.max(res,l+r+root.val);
return Math.max(l,r) + root.val;
}
}
三、力扣112. 路径总和(遍历)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
boolean flag = false;
public boolean hasPathSum(TreeNode root, int targetSum) {
if(root == null){
return false;
}
fun(root,targetSum,0);
return flag;
}
public void fun(TreeNode root, int targetSum, int path){
if(root == null){
return;
}
if(root.left == null && root.right == null){
if(path + root.val == targetSum){
flag = true;
}
return;
}
fun(root.left,targetSum,path+root.val);
fun(root.right,targetSum,path+root.val);
}
}
四、力扣112. 路径总和(分解)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {
if(root == null){
return false;
}
if(root.left == root.right && root.val == targetSum){
return true;
}
return hasPathSum(root.left,targetSum - root.val) || hasPathSum(root.right,targetSum-root.val);
}
}
本文介绍了在LeetCode中涉及的四个二叉树相关问题:翻转等价二叉树判断、最大路径和计算、路径总和遍历与分解方法,展示了动态规划和回溯算法在解决这类问题中的应用。
742

被折叠的 条评论
为什么被折叠?



