Description
An array of size
n ≤ 10
6 is given to you. There is a sliding window of size
k which is moving from the very left of the array to the very right. You can only see the
k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example:
The array is [1 3 -1 -3 5 3 6 7], and k is 3.
The array is [1 3 -1 -3 5 3 6 7], and k is 3.
| Window position | Minimum value | Maximum value |
|---|---|---|
| [1 3 -1] -3 5 3 6 7 | -1 | 3 |
| 1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
| 1 3 [-1 -3 5] 3 6 7 | -3 | 5 |
| 1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
| 1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
| 1 3 -1 -3 5 [3 6 7] | 3 | 7 |
Your task is to determine the maximum and minimum values in the sliding window at each position.
Input
The input consists of two lines. The first line contains two integers
n and
k which are the lengths of the array and the sliding window. There are
n integers in the second line.
Output
There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values.
Sample Input
8 3 1 3 -1 -3 5 3 6 7
Sample Output
-1 -3 -3 -3 3 3 3 3 5 5 6 7
Source
POJ Monthly--2006.04.28, Ikki
# include <stdio.h>
# define M 2100000
int n,i,k,a[M],Q[M],I[M];
void getMin()
{
int head=1,tail=0;
for(i=1;i<k;i++)
{
while(head<=tail&&Q[tail]>a[i]) tail--;
tail++;
Q[tail]=a[i];
I[tail]=i;
}
for(i=k;i<=n;i++)
{
while(head<=tail&&Q[tail]>=a[i]) tail--;
tail++;
Q[tail]=a[i];
I[tail]=i;
while(I[head]<=i-k) head++;
printf("%d ",Q[head]);
}
}
void getMax()
{
int head=1,tail=0;
for(i=1;i<k;i++)
{
while(head<=tail&&Q[tail]<=a[i]) tail--;
tail++;
Q[tail]=a[i];
I[tail]=i;
}
for(i=k;i<=n;i++)
{
while(head<=tail&&Q[tail]<=a[i]) tail--;
tail++;
Q[tail]=a[i];
I[tail]=i;
while(I[head]<=i-k) head++;
printf("%d ",Q[head]);
}
}
int main()
{
scanf("%d%d",&n,&k);
for(i=1;i<=n;i++) scanf("%d",&a[i]);
getMin();
printf("\n");
getMax();
return 0;
}

本文介绍了一种计算数组中滑动窗口内的最大值和最小值的方法,通过使用双端队列,可以在O(n)时间内完成计算。
1161

被折叠的 条评论
为什么被折叠?



