首次突破1000量子比特!德国TU Darmstadt发布全新量子处理架构

德国达姆施塔特工业大学的研究团队在《OPTICA》上发布成果,展示了首个包含1,000多个原子量子比特的量子处理器,通过新技术量子比特增殖突破了性能限制,预示着量子计算实用性的重大飞跃。

图片

内容来源:量子前哨(ID:Qforepost)

编辑丨慕一  编译/排版丨沛贤

深度好文:1200字丨8分钟阅读

量子计算机能否进一步发展,关键在于量子系统如何更具有可扩展性。随着量子系统规模的扩大,其算力优势会越来越明显。德国TU Darmstadt(达姆施塔特工业大学)的研究人员最近为实现这一目标迈出了决定性一步,最近,他们的研究结果已发表在知名期刊《OPTICA》上。


该项研究使用了聚焦激光束创建二维光镊阵列的量子处理器,是目前开发和模拟量子计算较有前途的技术之一,未来能实现非常广泛的应用:从药物开发到优化交通流的各种应用,都将从这项技术中受益。

目前,TU Darmstadt的量子处理器已经能够容纳数百个甚至上千个单原子量子系统,其中每个原子代表一个量子比特。为了取得更大进展,增加处理器中的量子比特数量很有必要。由TU Darmstadt物理系“Atoms – Photons – Quanta(原子-光子-量子)”研究小组的Gerhard Birkl教授领导的团队已经实现了这一目标。


该团队于2023年10月在 arXiv上张贴了一篇研究文章,现经过科学同行评审,已经发表在著名期刊《OPTICA》上,报告他们已经完成了世界上首个包含1,000多个原子量子比特的量子计算实验,实现了在一个平面中的量子处理架构。

图片

Birkl说:“我们非常高兴成为首个突破1,000个独立可控原子量子比特这一大关的公司,许多杰出的竞争对手都在紧随我们的脚步。”


这是通过引入“量子比特增殖”的新技术来实现的,这一新技术能够克服因激光器性能有限而导致的对可用量子比特数量的限制。

1,305个单原子量子比特被加载到具有3,000个阱点的量子阵列中,并重新组装成多达441个量子比特的无缺陷目标结构。通过并行使用多个激光源,突破了迄今为止几乎难以逾越的技术界限。


对于很多行业的实际应用来说,1,000个量子比特被视为突破量子计算实用性阈值。一旦突破量子计算机的效率能实现大幅提升。世界各地的研究人员一直在努力成为第一个突破这一门槛的人。在原子量子比特技术路线上的这一突破由Birkl教授领导的研究小组首次实现了。

《OPTICA》上的论文中还描述了随着激光源数量的进一步增加,将如何在短短几年内实现 10,000 个甚至更多的量子比特数量。

内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合Koopman算子理论与递归神经网络(RNN)的数据驱动建模方法,旨在对非线性纳米定位系统进行有效线性化建模,并实现高精度的模型预测控制(MPC)。该方法利用Koopman算子将非线性系统映射到高维线性空间,通过递归神经网络学习系统的动态演化规律,构建可解释性强、计算效率高的线性化模型,进而提升预测控制在复杂不确定性环境下的鲁棒性与跟踪精度。文中给出了完整的Matlab代码实现,涵盖数据预处理、网络训练、模型验证与MPC控制器设计等环节,具有较强的基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)可复现性和工程应用价值。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及自动化、精密仪器、机器人等方向的工程技术人员。; 使用场景及目标:①解决高精度纳米定位系统中非线性动态响应带来的控制难题;②实现复杂机电系统的数据驱动建模与预测控制一体化设计;③为非线性系统控制提供一种可替代传统机理建模的有效工具。; 阅读建议:建议结合提供的Matlab代码逐模块分析实现流程,重点关注Koopman观测矩阵构造、RNN网络结构设计与MPC控制器耦合机制,同时可通过替换实际系统数据进行迁移验证,深化对数据驱动控制方法的理解与应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值