学习pytorch~~~
1.迁移学习
为了对迁移学习产生一个直观的认识,不妨拿老师与学生之间的关系做类比。
一位老师通常在ta所教授的领域有着多年丰富的经验,在这些积累的基础上,老师们能够在课堂上教授给学生们该领域最简明扼要的内容。这个过程可以看做是老手与新手之间的“信息转移”。
这个过程在神经网络中也适用。我们知道,神经网络需要用数据来训练,它从数据中获得信息,进而把它们转换成相应的权重。这些权重能够被提取出来,迁移到其他的神经网络中,我们“迁移”了这些学来的特征,就不需要从零开始训练一个神经网络了 。
2.预训练
预训练的意思就是提前已经给你一些初始化的参数,这个参数不是随机的,而是通过其他类似数据集上面学得的,然后再用你的数据集进行学习,得到适合你数据集的参数,随机初始化的话,的确不容易得到结果,但是这个结果是因为速度太慢,而不是最终的结果不一样
1) 预训练模型就是已经用数据集训练好了的模型。
2) 现在我们常用的预训练模型就是他人用常用模型,比如VGG16/19,Resnet等模型,并用大型数据集来做训练集,比如Imagenet, COCO等训练好的模型参数
3 ) 正常情况下,我们常用的VGG16/19等网络已经是他人调试好的优秀网络,我们无需再修改其网络结构。
3.迁移学习和预训练关系
通过使用之前在大数据集上经过训练的预训练模型,我们可以直接使用相应的结构和权重,将它们应用到我们正在面对的问题上。这被称作是“迁移学习”,即将预训练的模型“迁移