时序差分法(Temporal Difference,简称TD法),是一种结合了蒙特卡罗法和动态规划法的方法。
通过蒙特卡罗法得到
通过TD法得到
其中称为TD目标
TD使用了当前回报和下一时刻的价值估计,所以整体系统没有达到最优,这样的估计是有偏差的,但方差减少。
而MC使用完整的采样得到了长期回报值,所以估计偏差小,但方差大。
代码如下:
# TD 之 SARSA
class SARSA(object):
def __init__(self, epsilon=0.0):
self.epsilon = epsilon
def sarse_eval(self, agent, env):
state = env.reset()
prev_state = -1
prev_act = -1
while True:
act = agent.play(state, self.epsilon)
next_state, reward, terminate, _ = env.step(act)
if prev_act != -1:
if terminate:
return_val = reward
else:
return_val = reward+agent.gamma*agent.value_q[state][act]
agent.value_n[prev_state][prev_act] += 1
agent.value_q[prev_state][prev_act] += (
(return_val - agent.value_q[prev_state][prev_act])/
agent.value_n[prev_state][prev_act]
)
prev_act = act
prev_state = state
state = next_state
if terminate:
break
def policy_improve(self, agent):
new_policy = np.zeros_like(agent.pi)
for i in range(1, agent.s_len):
new_policy[i] = np.argmax(agent.value_q[i,:])
if np.all(np.equal(new_policy, agent.pi)):
return False
else:
agent.pi = new_policy
return True
def sarsa(self, agent, env):
for i in range(10):
for j in range(2000):
self.sarse_eval(agent, env)
self.policy_improve(agent)
def td_sarse_demo():
env = SnakeEnv(10, [3,6])
np.random.seed(101)
agent3 = ModelFreeAgent(env)
td = SARSA(0.5)
with timer('Timer sarse Iter'):
td.sarsa(agent3, env)
print('return_pi={}'.format(eval_game(env,agent3)))
print(agent3.pi)
td_sarse_demo()