git clone https://github.com/Hezi-Resheff/Oreilly-Learning-TensorFlow
Softmax实例,MNIST http://yann.lecun.com/exdb/mnist/
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
DATA_DIR = '/tmp/data/mnist'
NUM_STEPS = 1000
MINIBATCH_SIZE = 100
data = input_data.read_data_sets(DATA_DIR, one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
y_true = tf.placeholder(tf.float32, [None, 10])
y_pred = tf.matmul(x, W)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_pred, labels=y_true))
gd_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
correct_mask = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y_true, 1))
accuracy = tf.reduce_mean(tf.cast(correct_mask, tf.float32))
with tf.Session() as sess:
# Train
sess.run(tf.global_variables_initializer())
for _ in range(NUM_STEPS):
batch_xs, batch_ys = data.train.next_batch(MINIBATCH_SIZE)
sess.run(gd_step, feed_dict={x: batch_xs, y_true: batch_ys})
ans = sess.run(accuracy, feed_dict={x: data.test.images, y_true: data.test.labels}) # 占位符赋值
print("Accuracy: {:.4}%".format(ans*100))
线性回归
import numpy as np
import tensorflow as tf
x_data = np.random.randn(2000, 3)
w_real = [0.3, 0.5, 0.1]
b_real = -0.2
noise = np.random.randn(1, 2000)*0.1
y_data = np.matmul(w_real, x_data.T) + b_real + noise
NUM_STEPS = 10
g = tf.Graph()
wb_ = []
with g.as_default():
x = tf.placeholder(tf.float32, shape=[None, 3])
y_true = tf.placeholder(tf.float32, shape=None)
with tf.name_scope('inference') as scope:
w = tf.Variable([[0,0,0]], dtype=tf.float32, name='weights')
b = tf.Variable(0, dtype=tf.float32, name='bias')
y_pred = tf.matmul(w, tf.transpose(x)) + b
with tf.name_scope('loss') as scope:
loss = tf.reduce_mean(tf.square(y_true-y_pred))
with tf.name_scope('train') as scope:
learning_rate = 0.5
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for step in range(NUM_STEPS):
sess.run(train, {x: x_data, y_true: y_data})
if (step % 5 == 0):
print(step, sess.run([w, b]))
wb_.append(sess.run([w, b]))
print(10, sess.run([w, b]))
逻辑回归
N = 20000
def sigmoid(x):
return 1 / (1 + np.exp(-x))
x_data = np.random.randn(N, 3)
w_real = [0.3, 0.5, 0.1]
b_real = -0.2
wxb = np.matmul(w_real, x_data.T) + b_real
y_data_pre_noise = sigmoid(wxb)
y_data = np.random.binomial(1, y_data_pre_noise)
print(y_data[:10])
NUM_STEPS = 30000
g1 = tf.Graph()
wb_ = []
with g1.as_default():
x = tf.placeholder(tf.float32, shape=[None, 3])
y_true = tf.placeholder(tf.float32, shape=None)
with tf.name_scope('inference') as scope:
w = tf.Variable([[0,0,0]], dtype=tf.float32, name='weights')
b = tf.Variable(0, dtype=tf.float32, name='bias')
y_pred = tf.matmul(w, tf.transpose(x)) + b
with tf.name_scope('loss') as scope:
#loss = tf.reduce_mean(tf.square(y_true-y_pred))
#y_pred = tf.sigmoid(y_pred)
#loss = y_true*tf.log(y_pred) - (1 - y_true)*tf.log(1 - y_pred)
loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=y_pred)
loss = tf.reduce_mean(loss)
with tf.name_scope('train') as scope:
learning_rate = 0.001
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for step in range(NUM_STEPS):
sess.run(train, {x: x_data, y_true: y_data})
if (step % 5 == 0):
print(step, sess.run([w, b]))
wb_.append(sess.run([w, b]))
print(50, sess.run([w, b]))