基于码分多址的多用户水下无线光通信(3)——解相关多用户检测

  继续上一篇博文,本文将介绍基于解相关的多用户检测算法。解相关检测器的优点是因不需要估计各个用户的接收信号幅值而具有抗远近效应的能力。常规的解相关检测器有运算量大和实时性差的缺点,本文针对异步CDMA的MAI主要来自干扰用户的相邻三个比特周期的特点,给出了基于相邻三个匹配滤波器输出数据的截断解相关检测算法。(我不知道怎么改公式里的字体,有的字母在公式中重复使用了,请根据上下文判断字母含义)

1、常规检测器

  假设已知各个用户的延时,且各个用户的延时满足 0 ≤ τ 1 ≤ ⋯ ≤ τ K < T b 0 \le \tau_1 \le \cdots \le \tau_{K} \lt T_\text{b} 0τ1τK<Tb。无论是常规检测器还是多用户检测器,接收信号都要经过相关器进行解扩。在相关器中,待检测用户的扩频波形被重新生成并与接收信号进行相关运算。相关器可以通过匹配滤波技术实现,因此又被称为匹配滤波器。对匹配滤波器的输出的采样时刻与对应的待检测用户的信号延时同步,采样间隔为一个比特周期,该采样值是判决最有可能传输的信息比特的充分统计量。第 k k k个用户的第 i i i个比特的匹配滤波器输出采样值表示为 y k [ i ] = ∑ n = 0 L N s − 1 s rx [ n 0 + ( i − 1 ) L N s + q k + n ] s k [ n ] = R k , k ( 0 ) A k b k [ i ] + ∑ m = − 1 1 ∑ j = 1 j ≠ k K R k , j ( m ) A j b j [ i − m ] + v k [ i ] , \begin{aligned} y_k[i] & = \sum_{n=0}^{LN_\text{s}-1}{s_\text{rx}[n_0+(i-1)LN_\text{s}+q_k+n]s_k[n]} \notag \\ & = R_{k,k}(0)A_kb_k[i]+\sum_{m=-1}^{1}{\sum_{\substack{j=1\\ j\neq k}}^{K}{R_{k,j}(m)A_jb_j[i-m]}}+v_k[i], \end{aligned} yk[i]=n=0LNs1srx[n0+(i1)LNs+qk+n]sk[n]=Rk,k(0)Akbk[i]+m=11j=1j=kKRk,j(m)Ajbj[im]+vk[i], 其中, R k , k ( 0 ) R_{k,k}(0) Rk,k(0)是第 k k k个用户的扩频波形在相对延时为 0 0 0时的自相关值, k ≠ j k\neq j k=j时的 R k , j ( m ) R_{k,j}(m) Rk,j(m)是两个不同用户的扩频波形之间的互相关值, R k , j ( m ) = ∑ n = − ∞ ∞ s k [ n − q k ] s j [ n + m L N s − q j ] , R_{k,j}(m) = \sum_{n=-\infty}^{\infty}{s_k[n-q_k]s_j[n+mLN_\text{s}-q_j]}, Rk,j(m)=n=sk[nqk]sj[n+mLNsqj], v k [ i ] v_k[i] vk[i]表示匹配滤波器输出的噪声。 y k [ i ] y_k[i] yk[i]公式中的第二行第一项表示有用的恢复数据,第二项表示匹配滤波器与其他用户的信号做相关运算产生的MAI。
  将针对各个用户的匹配滤波器的输出采样值按用户延时由短到长的顺序写入一个向量 y ( i ) = [ y 1 [ i ] , ⋯   , y K [ i ] ] T ∈ R K × 1 \boldsymbol{y}(i)=\left[y_1[i], \cdots,y_{K}[i]\right]^\text{T} \in \mathbb{R}^{K\times 1} y(i)=[y1[i],,yK[i]]TRK×1,向量 y ( i ) \boldsymbol{y}(i) y(i)表示为 y ( i ) = R ( 1 ) Q b ( i − 1 ) + R ( 0 ) Q b ( i ) + R ( − 1 ) Q b ( i + 1 ) + v ( i ) , \boldsymbol{y}(i) = \boldsymbol{R}(1)\boldsymbol{Q}\boldsymbol{b}(i-1)+\boldsymbol{R}(0)\boldsymbol{Q}\boldsymbol{b}(i)+\boldsymbol{R}(-1)\boldsymbol{Q}\boldsymbol{b}(i+1)+\boldsymbol{v}(i), y(i)=R(1)Qb(i1)+R(0)Qb(i)+R(1)Qb(i+1)+v(i), 其中,矩阵 R ( m ) ∈ R K × K \boldsymbol{R}(m)\in \mathbb{R}^{K\times K} R(m)RK×K的第 ( k , j ) (k,j) (k,j)个元素为 R k , j ( m ) R_{k,j}(m) Rk,j(m) R ( 1 ) \boldsymbol{R}(1) R(1)是对角线为 0 0 0的上三角矩阵, R ( − 1 ) \boldsymbol{R}(-1) R(1)是对角线为 0 0 0的下三角矩阵, b ( i ) = [ b 1 [ i ] , ⋯   , b K [ i ] ] T ∈ { + 1 , − 1 } K × 1 \boldsymbol{b}(i)=\left[b_1[i], \cdots,b_{K}[i]\right]^\text{T} \in \{+1,-1\}^{K\times 1} b(i)=[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值