摘要:集合划分问题(Set Partitioning Problem)是一种组合优化问题,其中给定一个集合S和其若干个不同的子集S1,S2,...,Sn后,需要找到子集的有效组合,使得集合S的每个元素正好出现在一个子集中,并且所选择的子集的组合成本最小。这个问题可以被建模为一个0-1整数线性规划问题,其中引入了一个0-1变量向量,用于表示是否选择子集。通过对变量和约束条件的定义,可以找到最优的子集划分方案,以最小化成本。集合划分问题在学术研究中被广泛应用于制定调度计划、运输计划、生产计划等领域,以解决实际问题并优化资源利用。
集合划分问题是一个NP-hard问题。使用传统的计算机算法来解决这个问题时,所需的时间将随着问题规模变大呈指数级增长。因此,对于大规模的问题,需要使用更高效的算法、近似算法或其他有效的工具来解决。
在场景应用上,如许多组织中的人员调度和排班、计划时刻表,除了启发式算法外,近年来集合划分优化方法变得更加流行。由于在实际情况中生成的优化模型非常大,因此开发了多种计算技术来有效地制定解决方案。例如生成具有超过650个约束和200,000个二进制变量的集合划分模型,这些技术经常用于解决航空公司应用程序中产生的多种问题。
同时,它在分析多智能体系统中的合作方面也发挥着重要作用。例如为了优化社会福利,找到一个将主体划分为联盟(联盟结构)的方法,使分区中联盟的价值总和最大化。通过组建联盟,自主传感器可以改善对某些区域的监管;绿色能源发电机可以减少其预期能源输出的不确定性;认知无线电网络可以增加其吞吐量;买家可以通过批量采购获得更便宜的价格......