目录
第一步:模型训练
import os
import cv2 as cv
from PIL import Image
import numpy as np
def getImageAndLabels(path):
#储存人脸数据
faceSamples=[]
#姓名数据
ids=[]
#图片信息
ImagePaths=[os.path.join(path,f) for f in os.listdir(path)]
#加载分类器
face_detector = cv.CascadeClassifier('F:/opencv/opencv/sources/data/haarcascades/haarcascade_frontalface_alt2.xml')
#全部图像进行遍历,保存身份信息
for imagePath in ImagePaths:
#打开图片,灰度化PIL有9种模式
PIL_img=Image.open(imagePath).convert('L')
#将图像转换为数组
img_numpy=np.array(PIL_img,'uint8')
#获取人脸特征
faces=face_detector.detectMultiScale(img_numpy)
#获取图片id和姓名
id=int(os.path.split(imagePath)[1].split('.')[0])
for x,y,w,h in faces:
ids.append(id)
faceSamples.append(img_numpy[y:y+h,x:x+w])
print('id:',id)
print('fs:',faceSamples)
return faceSamples,ids
path='./data/pic'
#获取人脸特征与姓名
faces,ids=getImageAndLabels(path)
#加载识别器
recognizer=cv.face.LBPHFaceRecognizer_create()
#训练
recognizer.train(faces,np.array(ids))
#保存文件
recognizer.write('trainer/1.yml')
第二步:识别人脸并显示名称
import cv2
#加载训练数据集文件
recognizer=cv2.face.LBPHFaceRecognizer_create()
#加载数据
recognizer.read('trainer/1.yml')
#名称
names=["Chen"]
def face_detect_demo(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
face_detect = cv2.CascadeClassifier('F:/opencv/opencv/sources/data/haarcascades/haarcascade_frontalface_alt2.xml')
face = face_detect.detectMultiScale(gray, 1.1)
for x, y, w, h in face:
cv2.rectangle(img, (x, y), (x + w, y + h), color=(0, 255, 255), thickness=2)
cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1)
ids,confidence=recognizer.predict(gray[y:y+h,x:x+w])
if(confidence>80):
cv2.putText(img,'unknow',(x+10,y-10),cv2.FONT_HERSHEY_SIMPLEX,0.75,(0,255,0),1)
else:
cv2.putText(img, str(names[ids - 1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
cv2.imshow('FaceDetect', img)
#打开摄像头和识别
cap = cv2.VideoCapture(0)
while True:
flag,frame = cap.read()
face_detect_demo(frame)
if ord('q') == cv2.waitKey(0):
break
cv2.destroyWindow()
cap.release()