必看!手把手教你玩转Dify的3大核心工具!

工具是扩展大模型能力边界的主要手段,也是实现复杂任务的核心机制,正确、灵活的使用工具是我们开发 AI 应用中必不可少的技能。一起行动起来,体验一下 Dify 中好玩又有用的这些插件吧。

Dify 中的工具是指其平台内置或支持集成的功能插件,用于扩展 AI 应用的能力。

1.工具作用

  • 扩展 LLM 的能力:工具可以赋予 LLM 连接外部世界的能力,例如联网搜索、科学计算、绘制图片等。例如,通过集成谷歌搜索工具,AI 助手可以回答实时问题。
  • 完成复杂任务:工具可以帮助 LLM 进行任务推理、步骤拆解和工具调用,从而完成复杂的任务。例如,在开发数据报表生成助手时,可以通过连接数据库工具获取数据,再利用数据分析工具进行处理,最后借助文件处理工具将结果生成报表。
  • 与其他系统或服务连接:工具可以方便地将 Dify 应用与其他系统或服务连接,实现与外部环境的交互。例如,通过集成邮件发送工具,可以实现自动发送邮件的功能。

2.工具分类

Dify 中工具分为以下 3 种类型:

  • 内置工具:Dify 第一方提供的工具,使用该工具前可能需要先给工具进行 授权。
  • 自定义工具:如果内置工具无法满足使用需求,你可以在 Dify 菜单导航 —工具,内创建自定义工具。你可以通过 OpenAPI/Swagger 标准格式导入或配置的工具,但在此之前你需要预先提供自定义服务器端,Http 协议的接口,让 Dify 进行调用。
  • 工作流:你可以编排一个更复杂的工作流,并将其发布为工具。详细说明请参考工具配置说明。

3.内置工具

内置工具可以点击“插件”、“市场”,通过浏览或搜索进行安装,如下图所示:

4.自定义工具

自定义工具实现分为以下两步:

  • HTTP 协议的自定义服务器端,用于处理某个业务逻辑。
  • 使用 OpenAPI/Swagger 协议将其添加到 Dify 中。

自定义的服务器端使用任何语言都可以,只要是 HTTP 协议即可,OpenAI/Swagger 协议如下。

例如添加一个天气预报的协议:

配置如下:

{
  "openapi": "3.1.0",
  "info": {
    "title": "Get weather data",
    "description": "Retrieves current weather data for a location.",
    "version": "v1.0.0"
  },
  "servers": [
    {
      "url": "https://weather.example.com"
    }
  ],
  "paths": {
    "/location": {
      "get": {
        "description": "Get temperature for a specific location",
        "operationId": "GetCurrentWeather",
        "parameters": [
          {
            "name": "location",
            "in": "query",
            "description": "The city and state to retrieve the weather for",
            "required": true,
            "schema": {
              "type": "string"
            }
          }
        ],
        "deprecated": false
      }
    }
  },
  "components": {
    "schemas": {}
  }
}
5.工作流

工作流就是将 Dify 中创建的 WorkFlow 发布为工具,让 Dify 其他地方进行调用:

小结

工具是扩展大模型能力边界的主要手段,也是实现复杂任务的核心机制,正确、灵活的使用工具是我们开发 AI 应用中必不可少的技能。一起行动起来,体验一下 Dify 中好玩又有用的这些插件吧。

 

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

 

 

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。

 

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取(扫下方二v码即可100%领取)

 

 

 

 

<think>好的,我现在需要帮助用户了解如何使用Qwen3大模型搭建本地知识库。根据用户提供的引用内容,之前他们部署了Qwen2.5模型,现在想升级到Qwen3。我需要结合之前的回答和引用中的信息,给出一个清晰的步骤指南。 首先,用户提到了Ollama和Dify的部署,所以可能需要在程中包含这些工具的使用。用户之前部署了Qwen2.5,现在转向Qwen3,我需要确认Qwen3是否支持类似的部署方法,或者是否需要额外的步骤。 接下来,用户提到要结合本地知识库作为Dify的上下文,这意味着需要将知识库集成到Dify中,可能涉及文档加载、向量化存储和检索增强生成(RAG)的应用。这部分需要详细说明如何处理知识库文件,如何配置Dify来使用这些数据。 另外,用户提供的引用中有关于资料领取的部分,但根据系统指令,应避免无关推广,所以需要忽略这部分内容,专注于技术步骤。 还需要考虑用户可能的痛点,比如环境配置、模型下载、知识库格式要求等。需要分步骤解释,确保用户能逐步操作,同时注意技术细节的正确性,比如正确的Ollama命令、Dify的配置参数等。 最后,生成相关问题时要围绕搭建过程中的常见问题、优化方法和应用场景展开,帮助用户进一步探索。</think>### 使用Qwen3大模型搭建本地知识库的详细程 #### 一、环境准备与模型部署 1. **私有化部署Qwen3模型** 使用Ollama工具部署Qwen3模型(7B或更高参数版本): ```bash # 拉取Qwen3模型(假设已支持) ollama pull qwen3:7b # 启动模型服务 ollama serve ``` 若官方未直接支持,可手动构建`Modelfile`: ```dockerfile FROM qwen/qwen3:7b PARAMETER temperature 0.7 SYSTEM "你是一个专业的知识库问答助手" ``` 2. **验证模型可用性** 通过CURL测试API接口: ```bash curl http://localhost:11434/api/generate -d &#39;{ "model": "qwen3:7b", "prompt": "量子力学三大基本原理是什么?" }&#39; ``` #### 二、知识库构建与处理 1. **文档格式规范** - 支持格式:PDF/TXT/MarkDown/HTML - 推荐预处理:使用Python库清洗文本 ```python from bs4 import BeautifulSoup def clean_html(raw_html): soup = BeautifulSoup(raw_html, "html.parser") return soup.get_text() ``` 2. **向量化存储** 使用LangChain构建向量数据库: ```python from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh") documents = [...] # 预处理后的文档列表 vector_db = FAISS.from_documents(documents, embeddings) vector_db.save_local("my_knowledge_base") ``` #### 三、Dify平台集成(社区版) 1. **部署Dify服务** ```bash git clone https://github.com/langgenius/dify cd dify/docker docker-compose up -d ``` 2. **配置知识库连接** 在Dify控制台: - 新建应用 → 选择「知识库问答」 - 上传预处理文档或连接现有向量库 - 设置检索参数: ```yaml retriever: search_type: "similarity" k: 5 score_threshold: 0.7 ``` 3. **RAG流程配置** ```python # 自定义处理链示例 from langchain_core.runnables import RunnablePassthrough retriever = vector_db.as_retriever() qa_chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt_template | llm | output_parser ) ``` #### 四、效果优化技巧 1. **混合检索策略** 结合关键词搜索与向量检索: ```python from langchain.retrievers import BM25Retriever, EnsembleRetriever bm25_retriever = BM25Retriever.from_documents(docs) ensemble_retriever = EnsembleRetriever( retrievers=[bm25_retriever, vector_retriever], weights=[0.4, 0.6] ) ``` 2. **查询扩展** 使用Query2Doc技术增强检索: ```python from transformers import pipeline expander = pipeline("text-generation", model="Qwen/Qwen1.5-7B") expanded_query = expander(f"生成与&#39;{query}&#39;相关的三个扩展问题") ``` #### 五、监控与维护 1. **日志分析配置** ```bash # 查看Dify请求日志 docker logs -f dify-api ``` 2. **知识库更新机制** ```python # 增量更新脚本示例 def update_knowledge(new_docs): global vector_db vector_db.add_documents(new_docs) vector_db.save_local("my_knowledge_base") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值