Python干货:panda特殊索引器——过滤数据

本文介绍了如何使用Python的pandas库通过布尔索引过滤DataFrame数据。主要探讨了DataFrame的.loc[], .iloc[], 和 .ix[] 方法,并展示了如何基于数据的实际值、列值和索引值创建布尔掩码进行数据筛选。" 126045109,12674167,5G核心网详解:架构、关键技术与5G专网,"['5G技术', '网络架构', '通信技术', '网络切片', '边缘计算']

迄今为止最常见从DataFrame获取元素、行和列的数据索引方式:

  • Dataframe.[];此函数也称为索引运算符。
  • Dataframe.loc[] :此函数用于标签。
  • Dataframe.iloc[] :此函数用于基于位置或整数的
  • Dataframe.ix[] :此函数用于标号和基于整数的函数。

它们统称为索引器。而布尔索引是一种索引类型,它使用DataFrame中数据的实际值。

它们统称为索引器。而布尔索引是一种索引类型,它使用DataFrame中数据的实际值。

根据DataFrame中数据的实际值而不是它们的行/列标签或整数位置来选择数据子集。

在布尔索引中使用布尔向量过滤数据,通过四种方式过滤数据:

  • 使用布尔索引访问DataFrame
  • 将布尔掩码应用于数据帧
  • 基于列值的掩蔽数据
  • 基于索引值的掩蔽数据

使用布尔索引访问DataFrame:

创建一个dataframe,其中的dataframe索引包含一个布尔值。即“True”或“false”。例如

# importing pandas as pd
import pandas as pd
   
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
   
df = pd.DataFrame(dict, index = [True, False, True, False])
   
print(df)

产出:

借助布尔索引访问数据,使用以下三个函数访问数据文件.loc[], .iloc[], .ix[]

使用布尔索引访问Dataframe.loc[]

为了访问具有布尔索引的数据,使用.loc[],我们只需将布尔值(真或假)传递给.loc[]功能。

# importing pandas as pd
import pandas as pd
   
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
  
# creating a dataframe with boolean index 
df = pd.DataFrame(dict, index = [True, False, True, False])
  
# accessing a dataframe using .loc[] function 
print(df.loc[True])

产出:

使用布尔索引访问Dataframe.iloc[]

为了访问数据文件,请使用.iloc[],我们必须在iloc[]功能但iloc[]函数只接受整数作为参数,因此它将引发一个错误,因此我们只能在将整数传递给iloc[]功能
代码1:

# importing pandas as pd
import pandas as pd
   
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
  
# creating a dataframe with boolean index  
df = pd.DataFrame(dict, index = [True, False, True, False])
  
# accessing a dataframe using .iloc[] function 
print(df.iloc[True])

产出:

TypeError 

代码2:

# importing pandas as pd
import pandas as pd
   
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
  
# creating a dataframe with boolean index  
df = pd.DataFrame(dict, index = [True, False, True, False])
   
  
# accessing a dataframe using .iloc[] function
print(df.iloc[1])

产出:

使用布尔索引访问Dataframe.ix[]

为了访问数据文件,请使用.ix[],我们必须将布尔值(真或假)和整数值传递给.ix[]因为我们知道.ix[]函数是.loc[]和.iloc[]功能。
代码1:

# importing pandas as pd
import pandas as pd
   
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
  
# creating a dataframe with boolean index 
df = pd.DataFrame(dict, index = [True, False, True, False])
   
  
# accessing a dataframe using .ix[] function
print(df.ix[1])

产出:

代码2:

# importing pandas as pd
import pandas as pd
   
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
  
# creating a dataframe with boolean index 
df = pd.DataFrame(dict, index = [True, False, True, False])
   
  
# accessing a dataframe using .ix[] function
print(df.ix[1])

产出:

将布尔掩码应用于dataframe:

应用一个布尔掩码,它将只打印传递布尔值True的数据,使用__getitems__或[]访问。

用dataframe中包含的长度相同的真假列表来应用布尔掩码,

代码1:

# importing pandas as pd
import pandas as pd
   
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["MBA", "BCA", "M.Tech", "MBA"],
        'score':[90, 40, 80, 98]}
   
df = pd.DataFrame(dict, index = [0, 1, 2, 3])
   
  
  
print(df[[True, False, True, False]])

产出:

代码2:

# importing pandas package
import pandas as pd
   
# making data frame from csv file
data = pd.read_csv("nba1.1.csv")
   
df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,
                                 7, 8, 9, 10, 11, 12])
  
   
df[[True, False, True, False, True,
    False, True, False, True, False,
                True, False, True]]

产出:

基于列值的掩蔽数据:
在dataframe中,使用不同的运算符(如==, >, <, <=, >=)根据列值对数据进行过滤。

代码1:

# importing pandas as pd
import pandas as pd
   
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["BCA", "BCA", "M.Tech", "BCA"],
        'score':[90, 40, 80, 98]}
  
# creating a dataframe 
df = pd.DataFrame(dict)
   
# using a comparison operator for filtering of data
print(df['degree'] == 'BCA')

产出:

代码2:

# importing pandas package
import pandas as pd
   
# making data frame from csv file
data = pd.read_csv("nba.csv", index_col ="Name")
   
# using greater than operator for filtering of data
print(data['Age'] > 25)

产出:

基于索引值的掩蔽数据:
在dataframe中,使用不同的运算符创建基于索引值的掩码 ==, >, <

代码1:

# importing pandas as pd
import pandas as pd
   
# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],
        'degree': ["BCA", "BCA", "M.Tech", "BCA"],
        'score':[90, 40, 80, 98]}
   
  
df = pd.DataFrame(dict, index = [0, 1, 2, 3])
  
mask = df.index == 0
  
print(df[mask])

产出:

代码2:

# importing pandas package
import pandas as pd
   
# making data frame from csv file
data = pd.read_csv("nba1.1.csv")
  
# giving a index to a dataframe
df = pd.DataFrame(data, index = [0, 1, 2, 3, 4, 5, 6,
                                 7, 8, 9, 10, 11, 12])
  
# filtering data on index value
mask = df.index > 7 
  
df[mask]

  产出:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值