Harmonic Number (II)
LightOJ - 1245
名称 | 数量/来源 |
---|---|
Time limit | 3000 ms |
Memory | 32768 kB |
Source | Problem Setter: Jane Alam Jan |
题目描述:
I was trying to solve problem ‘1234 - Harmonic Number’, I wrote the following code
long long H( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
res = res + n / i;
return res;
}
Yes, my error was that I was using the integer divisions only. However, you are given n, you have to find H(n) as in my code.
输入:
Input starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n < 2^31).
输出:
For each case, print the case number and H(n) calculated by the code.
样例输入:
11
1
2
3
4
5
6
7
8
9
10
2147483647
样例输出:
Case 1: 1
Case 2: 3
Case 3: 5
Case 4: 8
Case 5: 10
Case 6: 14
Case 7: 16
Case 8: 20
Case 9: 23
Case 10: 27
Case 11: 46475828386
题目大意:
先求出前sqrt(n)项和:即n/1+n/2+…+n/sqrt(n)
再求出后面所以项之和.后面每一项的值小于sqrt(n),计算值为1到sqrt(n)的项的个数,乘以其项值即可快速得到答案
例如:10/1+10/2+10/3+…+10/10
sqrt(10) = 3
先求出其前三项的和为10/1+10/2+10/3
在求出值为1的项的个数为(10/1-10/2)个,分别是(10/10,10/9,10/8,10/7,10/6),值为2个项的个数(10/2-10/3)分别是(10/5,10/4),在求出值为3即sqrt(10)的项的个数.
显然,值为sqrt(10)的项计算了2次,减去一次即可得到答案。当n/(int)sqrt(n) == (int)sqrt(n)时,值为sqrt(n)的值会被计算2次。
code:
#include<stdio.h>
#include<math.h>
int main()
{
int ttt;
scanf("%d",&ttt);
for(int kk=1;kk<=ttt;kk++)
{
long long n;
scanf("%lld",&n);
int m=sqrt(n);
long long ans=0;
for(int i=1;i<=m;i++)
{
ans+=n/i;
}
for(int i=1;i<=m;i++)
{
ans+=(n/i-n/(i+1))*i;
}
if(m==n/m)ans-=m;
printf("Case %d: %lld\n",kk,ans);
}
return 0;
}