[AGC043D] Merge Triplets

本文介绍了一道有趣的计数问题,通过分析排列的性质,特别是连续最大值出现次数的限制,设计了状态转移方程并实现了一个动态规划解决方案。最终,通过计算前i个数中cnt_1-cnt_2等于j的方案数,求得了答案。

题目传送门

很有意思的计数题

解法

考虑经过操作后得到的排列的性质


性质1:
p r e ( i ) pre(i) pre(i):前i个位置的最大值,则不会出现超过3个的连续位置的 p r e pre pre相同
必要性
考虑反证,若有超过 3 3 3个的连续位置的 p r e pre pre相同,那么至少有连续有连续三次选择了比第一次选择要小的数,那么至少一个块的长度为 4 4 4,题目中规定块长为 3 3 3,因此不合法
充分性
发现没有充分性,比如: { 2 , 1 , 4 , 3 , 6 , 5 } \{2,1,4,3,6,5\} {2,1,4,3,6,5},手玩模拟一下就会发现有问题
性质2
若排列总长为 3 N 3N 3N, i i i个的连续位置的 p r e pre pre相同的个数为 c n t i cnt_i cnti,那么 c n t 2 ≤ N − c n t 3 cnt_2\le N-cnt_3 cnt2Ncnt3
必要性
对于 c n t 2 cnt_2 cnt2 c n t 3 cnt_3 cnt3来说,他们对应的块内的大小关系是一定的,所以可得 c n t 2 + c n t 3 ≤ N cnt_2+cnt_3\le N cnt2+cnt3N,移项就行了
我们可以化简:
c n t 2 ≤ N − c n t 3 ⇒ 3 c n t 2 ≤ 3 N − 3 c n t 3 ⇒ 3 c n t 2 ≤ ( c n t 1 + 2 c n t 2 + 3 c n t 3 ) − 3 c n t 3 ⇒ 移项得 c n t 2 ≤ c n t 1 \begin{aligned} &cnt_2\le N-cnt_3\\ \Rightarrow&3cnt_2\le 3N-3cnt_3\\ \Rightarrow&3cnt_2\le (cnt_1+2cnt_2+3cnt_3)-3cnt_3\\ \Rightarrow^{移项得}&cnt_2\le cnt_1 \end{aligned} 移项得cnt2Ncnt33cnt23N3cnt33cnt2(cnt1+2cnt2+3cnt3)3cnt3cnt2cnt1

最后我们发现性质1性质2加起来就有了充分性


状态设计:

f i , j : 前 i 个数, c n t 1 − c n t 2 = j 的方案数 f_{i,j}:前i个数,cnt_1-cnt_2=j的方案数 fi,j:i个数,cnt1cnt2=j的方案数
显然 a n s = ∑ k = 0 3 n f 3 n , k ans=\sum_{k=0}^{3n} f_{3n,k} ans=k=03nf3n,k

状态转移:

考虑从小到大放数,对放 1 / 2 / 3 1/2/3 1/2/3个数分别考虑
f i , j → f i + 1 , j + 1 f i , j ∗ ( i + 1 ) → f i + 2 , j − 1 f i , j ∗ ( i + 1 ) ∗ ( i + 2 ) → f i + 3 , j \begin{aligned} &f_{i,j}\to f_{i+1,j+1}\\ &f_{i,j}*(i+1)\to f_{i+2,j-1}\\ &f_{i,j}*(i+1)*(i+2)\to f_{i+3,j} \end{aligned} fi,jfi+1j+1fi,j(i+1)fi+2,j1fi,j(i+1)(i+2)fi+3j
就好了

code:
#include<bits/stdc++.h>
using namespace std;
const int N = 2e3 + 7, M = N * 3;
typedef long long ll;
int n,mod,ans;
int f[M][M<<1];
int ad(int x,int y){ return (1ll*x+1ll*y)%mod; }
void work(int i,int j){
	f[i+1][j+1+M]=ad(f[i+1][j+1+M],f[i][j+M]);
	f[i+2][j-1+M]=ad(f[i+2][j-1+M],1ll*f[i][j+M]*(i+1)%mod);
	f[i+3][j+M]=ad(f[i+3][j+M],1ll*f[i][j+M]*(i+1)%mod*(i+2)%mod);
}
int main() {
	scanf("%d%d",&n,&mod); n=n*3;
	f[0][M]=1;
	for(int i=0;i<n;i++) 
		for(int j=-i;j<=i;j++) 
			work(i,j);
	for(int i=0;i<=n;i++) 
		ans=ad(ans,f[n][i+M]);
	printf("%d\n",ans);
}

TXL

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值