codeforces E. New Reform (并查集)

本文介绍了一种解决“最少单独城市”问题的算法。通过构建有向图,并使用并查集来维护联通块,标记环的存在与否,最终计算出修改道路方向后最少有几个城市成为单独城市的最小值。
题目链接:E. New Reform
大意:

n个城市,m条双向路,将这些路改成单向的,如果一个城市没有通向它的路,(入度为0)就说明该城市是单独的。问修改后最少有几个单独的城市,要使结果最小。

思路:

1.可以建成一个有向图,可能有k个联通块,如果一个联通块没有环,就说明这个联通块,至少有一个城市单独的,因此就化成找联通块和环的问题
2.联通块的话可以用并查集来维护,然后用cir[maxn]数组来标记是否有环,如果这个联通块的根节点存在环,那么该联通块不存在单独的城市,如果不存在环的话cnt++,最后的cnt就是答案;

代码:

#include<iostream>
#include<vector>
#include<string>
#include<cstring> 
using namespace std;
typedef pair<int,int> P;
typedef long long ll;
const int N=1e5+5;
int pre[N];
//并查集维护联通块 
int find(int x)
{
    if(x==pre[x])return x;
    return pre[x]=find(pre[x]);
}
int cir[N]; //标记是否有环 
int main()
{
    memset(cir,0,sizeof(cir));
    int n,m,i,j,u,v;
    cin>>n>>m;
    for(i=0;i<=n;++i)
    pre[i]=i;
    int cnt=0;
    for(i=0;i<m;++i)
    {
        cin>>u>>v;
        int x=find(u);
        int y=find(v);
        //相等说明两个在一个联通块里面,而这两个点之间又存在边,说明形成了环。 
        if(x==y)
        {
            cir[x]=1;
        }
        else{
            pre[y]=x;
            //将y的父亲标记成x,那么这个联通块的根节点就变成x
            //那么如果y成环的话,要转移到x上 
            if(cir[y])cir[x]=cir[y];
        }
    }
    for(i=1;i<=n;++i)
    {
        //一个联通块只有一个根节点,如果没成环就++ 
        if(pre[i]==i&&!cir[i])
        { 
            cnt++; 
        }
    }
    cout<<cnt;
    return 0;
 } 
### 关于 CodeForces 892E 的解题思路分析 #### 使用可撤销并查集解决最小生成树中的边集合验证问题 针对给定的无向图以及多个询问,每个询问涉及一组特定的边,并要求判断这组边能否同时存在于某棵最小生成树中。此问题可以通过结合Kruskal算法构建最小生成树的过程来求解,在这一过程中利用到的是按照权重升序排列后的边逐步加入至森林结构之中[^1]。 为了高效处理多次查询而不影响后续操作的结果,引入了带有回溯功能的数据结构——即所谓的“可撤销并查集”。这种特殊形式的并查集允许执行合并(union)的同时记录下每一次变动以便之后能够恢复原状;当完成一次查询判定后即可通过一系列反向动作使数据结构回到初始状态,从而不影响其他独立事件的发生逻辑[^3]。 具体实现方法如下: - 将所有的边依据其权重从小到大排序; - 对每一个询问所涉及到的边也做同样的预处理; - 开始遍历已排序好的全局边列表,每当遇到属于当前待检验询问范围内的边时,则尝试将其纳入现有连通分量内; - 如果发现形成环路则说明该询问无法满足条件; - 同样地,任何不属于当前询问但同样处于相同权值下的其它边也应该被考虑进来以确保最终形成的MST是最优解的一部分; - 完成一轮测试后记得清除所有临时更改使得系统重置为未受干扰的状态准备迎接下一个挑战。 ```cpp #include <bits/stdc++.h> using namespace std; struct Edge { int u, v; }; class DSUWithRollback { public: vector<int> parent, rank, historyParent, historyRank; void init(int n){ parent.resize(n); iota(parent.begin(), parent.end(), 0); // Fill with identity mapping. rank.assign(n, 0); historyParent.clear(); historyRank.clear(); } int findSet(int i) {return (parent[i]==i)?i:(findSet(parent[i]));} bool isSameSet(int i, int j){ return findSet(i)==findSet(j);} void unionSets(int i, int j){ if (!isSameSet(i,j)){ historyParent.push_back(findSet(i)); historyParent.push_back(findSet(j)); historyRank.push_back(rank[findSet(i)]); historyRank.push_back(rank[findSet(j)]); int x=findSet(i), y=findSet(j); if (rank[x]>rank[y]) swap(x,y); parent[x]=y; if (rank[x]==rank[y]) ++rank[y]; } } void rollback(){ while(!historyParent.empty()){ parent[historyParent.back()]=historyParent.back(); historyParent.pop_back(); rank[historyParent.back()] = historyRank.back(); historyParent.pop_back(); historyRank.pop_back(); } } }; ``` 上述代码展示了如何创建一个支持撤销机制的并查集类`DSUWithRollback`,它可以在不破坏原有连接关系的前提下安全地进行节点间的联合与查找操作。此外还提供了用于追踪变化历史的方法,方便在必要时候撤消最近的一系列更动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值