F. Polycarp and Hay (思维+bfs)

题目链接:F. Polycarp and Hay
题目大意:

给出一个n行m列的矩阵,一个k值,让按照要求修改矩阵

1.矩阵上的数值只能减小,不能增加
2.修改后的矩阵,一些位置上的点的大小要相等,其他位置上的点必须为0
3.这个位置上的点的和要等于k
4.这些点中至少有一个钥等于原矩阵中的对应位置的点的大小
5.这些点必须要联通
如果能得到这样的矩阵就输出,否则就输出NO;

思路:

1.从第四条规则切入,修改后的矩阵中肯定只包含原矩阵中的一个数字和0。
2.对矩阵每个点Ai j进行计算,如果A ij 的cnt倍等于k,并且矩阵中存在大于等于A ij并且和A ij联通的区域,该区域中的数字个数大小大于等于cnt,那么就是答案了。
3.用bfs求联通区域的大小,从i j开始搜索,然后查找和他联通的大小,查找到cnt个就可以返回ture。直接输出。

但是不做优化的话在95会TLE。每次搜索一个点,如果该点的cnt倍数等于k,但是它组成的联通块的大小小于cnt个,就无法构成答案,但是这些联通块中有和他相等的数字,那么这些数字也不用搜索,他们组成的联通块大小必然也无法大于cnt,这些就是无用的点。开个con数组,标记这些无需再搜索的点。

代码:

#include<iostream>
#include<vector>
#include<algorithm>
#include<cmath>
#include<string>
#include<queue>
#include<cstring> 
using namespace std;
const int N=1005;
int sk[N][N];
typedef long long ll;
typedef pair<int,int>Pii;
ll k;
vector<ll>v;
int sum=0,vis[N][N],n,m, con[N][N];
int dx[4]={0,1,0,-1},dy[4]={1,0,-1,0};
//查询联通块大小 
bool bfs(Pii p,int cnt)
{
    memset(vis,0,sizeof(vis));
    queue<Pii>q;
    q.push(p);
    vis[p.first][p.second]=1;
    int res=1;
    while(!q.empty())
    {
        if(res==cnt)return true;
        Pii pt=q.front();
        q.pop();
        int x=pt.first;
        int y=pt.second;
        for(int i=0;i<4;++i)
        {
            int nx=x+dx[i];
            int ny=y+dy[i];
            if(nx<0||nx>=n||ny<0||ny>=m)continue;
            if(!vis[nx][ny]&&sk[nx][ny]>=sk[p.first][p.second])
            {
                if(sk[nx][ny]==sk[p.first][p.second])con[nx][ny]=1;
                vis[nx][ny]=1;
                res++;
                q.push(Pii(nx,ny));
                if(res==cnt)return true;

            }
        }
    }
    return false;
}
int main()
{
    int flag=0;
    memset(con,0,sizeof(con));
    int i,j;
    cin>>n>>m>>k;
    for(i=0;i<n;++i)
    for(j=0;j<m;++j)
    scanf("%d",&sk[i][j]);
    int ans=-1;
    for(i=0;i<n;++i)
    {

    for(j=0;j<m;++j)
    {
        ll cnt=k/sk[i][j];
        //如果是该点的cnt倍数是k,并且没有被标记过无用点的就进行搜索。 
        if(cnt<=n*m&&!(k%sk[i][j])&&!con[i][j])
        {
            if(bfs(Pii(i,j),cnt))
            {
                ans=sk[i][j];
                flag=1;
                break;
            }
        }
    }
    if(flag)break;
    }
    if(ans==-1)
    {
        cout<<"NO";
        return 0;
    }
    cout<<"YES"<<endl;
    for(i=0;i<n;++i)
    for(j=0;j<m;++j)
    {
        if(vis[i][j])
        printf("%d%c",ans," \n"[j==m-1]);
        else printf("0%c"," \n"[j==m-1]);
    }
    return 0;
}
【最优潮流】直流最优潮流(OPF)课设(Matlab代码实现)内容概要:本文档主要围绕“直流最优潮流(OPF)课设”的Matlab代码实现展开,属于电力系统优化领域的教学与科研实践内容。文档介绍了通过Matlab进行电力系统最优潮流计算的基本原理与编程实现方法,重点聚焦于直流最优潮流模型的构建与求解过程,适用于课程设计或科研入门实践。文中提及使用YALMIP等优化工具包进行建模,并提供了相关资源下载链接,便于读者复现与学习。此外,文档还列举了大量与电力系统、智能优化算法、机器学习、路径规划等相关的Matlab仿真案例,体现出其服务于科研仿真辅导的综合性平台性质。; 适合人群:电气工程、自动化、电力系统及相关专业的本科生、研究生,以及从事电力系统优化、智能算法应用研究的科研人员。; 使用场景及目标:①掌握直流最优潮流的基本原理与Matlab实现方法;②完成课程设计或科研项目中的电力系统优化任务;③借助提供的丰富案例资源,拓展在智能优化、状态估计、微电网调度等方向的研究思路与技术手段。; 阅读建议:建议读者结合文档中提供的网盘资源,下载完整代码与工具包,边学习理论边动手实践。重点关注YALMIP工具的使用方法,并通过复现文中提到的多个案例,加深对电力系统优化问题建模与求解的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值