Biorhythms HDU - 1370(中国剩余定理)

本文介绍了一个关于寻找三个不同周期峰值同步出现的问题,通过数学方法求解最小公倍数和特定系数来确定峰值同步出现的具体日期。

Some people believe that there are three cycles in a person’s life that start the day he or she is born. These three cycles are the physical, emotional, and intellectual cycles, and they have periods of lengths 23, 28, and 33 days, respectively. There is one peak in each period of a cycle. At the peak of a cycle, a person performs at his or her best in the corresponding field (physical, emotional or mental). For example, if it is the mental curve, thought processes will be sharper and concentration will be easier.

Since the three cycles have different periods, the peaks of the three cycles generally occur at different times. We would like to determine when a triple peak occurs (the peaks of all three cycles occur in the same day) for any person. For each cycle, you will be given the number of days from the beginning of the current year at which one of its peaks (not necessarily the first) occurs. You will also be given a date expressed as the number of days from the beginning of the current year. You task is to determine the number of days from the given date to the next triple peak. The given date is not counted. For example, if the given date is 10 and the next triple peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given date, you should give the number of days to the next occurrence of a triple peak.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input

You will be given a number of cases. The input for each case consists of one line of four integers p, e, i, and d. The values p, e, and i are the number of days from the beginning of the current year at which the physical, emotional, and intellectual cycles peak, respectively. The value d is the given date and may be smaller than any of p, e, or i. All values are non-negative and at most 365, and you may assume that a triple peak will occur within 21252 days of the given date. The end of input is indicated by a line in which p = e = i = d = -1.

Output

For each test case, print the case number followed by a message indicating the number of days to the next triple peak, in the form:

Case 1: the next triple peak occurs in 1234 days.

Use the plural form ``days’’ even if the answer is 1.

Sample Input

1

0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1

Sample Output

Case 1: the next triple peak occurs in 21252 days.
Case 2: the next triple peak occurs in 21152 days.
Case 3: the next triple peak occurs in 19575 days.
Case 4: the next triple peak occurs in 16994 days.
Case 5: the next triple peak occurs in 8910 days.
Case 6: the next triple peak occurs in 10789 days.

题意:

有三个周期 分别为23,28 ,33天,给出每一个周期出现峰值的某一天,计算从题中给出的第d天到三个周期同时出现峰值的那一天一共有多少天?

注意当三峰值出现在第d天,则要输出下一个三峰值出现距离第d天有多少天

思路:

设出现三峰值那一天为第n天,则:

n%23=p

n%28=e

n%33=i

则有:

k1*(23*28)%33=1

k2*(23*33)%28=1

k3*(28*33)%23=1

k1,k2,k3用三个for循环求出

求解最小的n的公式为

(k1(2328)+k2(2333)+k3(28*33)%23=1)%lcm(23,28,33)*

最后计算从第d天到第n天有多少天即可

代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int p,e,l,d,k=1;
        while(~scanf("%d %d %d %d",&p,&e,&l,&d)&&p+e+l+d!=-4)
        {
            int f,f1,f2;
            for(int i=0; i<33; i++)
            {
                if((23*28*i)%33==1)
                {
                    f=23*28*i;
                    break;
                }
            }
            for(int i=0; i<23; i++)
            {
                if((28*33*i)%23==1)
                {
                    f1=28*33*i;
                    break;
                }
            }
            for(int i=0; i<28; i++)
            {
                if((23*33*i)%28==1)
                {
                    f2=23*33*i;
                    break;
                }
            }
            int n;
            if(p==0&&e==0&&l==0)
                n=21252;
            else
                n=(f*l+f1*p+f2*e)%21252;
            if(n>d)
                n=n-d;
            else
                n=n+21252-d;
            printf("Case %d: the next triple peak occurs in %d days.\n",k++,n);
        }
    }
    return 0;
}
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值