Biorhythms HDU - 1370(中国剩余定理)

本文介绍了一个关于寻找三个不同周期峰值同步出现的问题,通过数学方法求解最小公倍数和特定系数来确定峰值同步出现的具体日期。

Some people believe that there are three cycles in a person’s life that start the day he or she is born. These three cycles are the physical, emotional, and intellectual cycles, and they have periods of lengths 23, 28, and 33 days, respectively. There is one peak in each period of a cycle. At the peak of a cycle, a person performs at his or her best in the corresponding field (physical, emotional or mental). For example, if it is the mental curve, thought processes will be sharper and concentration will be easier.

Since the three cycles have different periods, the peaks of the three cycles generally occur at different times. We would like to determine when a triple peak occurs (the peaks of all three cycles occur in the same day) for any person. For each cycle, you will be given the number of days from the beginning of the current year at which one of its peaks (not necessarily the first) occurs. You will also be given a date expressed as the number of days from the beginning of the current year. You task is to determine the number of days from the given date to the next triple peak. The given date is not counted. For example, if the given date is 10 and the next triple peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given date, you should give the number of days to the next occurrence of a triple peak.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input

You will be given a number of cases. The input for each case consists of one line of four integers p, e, i, and d. The values p, e, and i are the number of days from the beginning of the current year at which the physical, emotional, and intellectual cycles peak, respectively. The value d is the given date and may be smaller than any of p, e, or i. All values are non-negative and at most 365, and you may assume that a triple peak will occur within 21252 days of the given date. The end of input is indicated by a line in which p = e = i = d = -1.

Output

For each test case, print the case number followed by a message indicating the number of days to the next triple peak, in the form:

Case 1: the next triple peak occurs in 1234 days.

Use the plural form ``days’’ even if the answer is 1.

Sample Input

1

0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1

Sample Output

Case 1: the next triple peak occurs in 21252 days.
Case 2: the next triple peak occurs in 21152 days.
Case 3: the next triple peak occurs in 19575 days.
Case 4: the next triple peak occurs in 16994 days.
Case 5: the next triple peak occurs in 8910 days.
Case 6: the next triple peak occurs in 10789 days.

题意:

有三个周期 分别为23,28 ,33天,给出每一个周期出现峰值的某一天,计算从题中给出的第d天到三个周期同时出现峰值的那一天一共有多少天?

注意当三峰值出现在第d天,则要输出下一个三峰值出现距离第d天有多少天

思路:

设出现三峰值那一天为第n天,则:

n%23=p

n%28=e

n%33=i

则有:

k1*(23*28)%33=1

k2*(23*33)%28=1

k3*(28*33)%23=1

k1,k2,k3用三个for循环求出

求解最小的n的公式为

(k1(2328)+k2(2333)+k3(28*33)%23=1)%lcm(23,28,33)*

最后计算从第d天到第n天有多少天即可

代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int p,e,l,d,k=1;
        while(~scanf("%d %d %d %d",&p,&e,&l,&d)&&p+e+l+d!=-4)
        {
            int f,f1,f2;
            for(int i=0; i<33; i++)
            {
                if((23*28*i)%33==1)
                {
                    f=23*28*i;
                    break;
                }
            }
            for(int i=0; i<23; i++)
            {
                if((28*33*i)%23==1)
                {
                    f1=28*33*i;
                    break;
                }
            }
            for(int i=0; i<28; i++)
            {
                if((23*33*i)%28==1)
                {
                    f2=23*33*i;
                    break;
                }
            }
            int n;
            if(p==0&&e==0&&l==0)
                n=21252;
            else
                n=(f*l+f1*p+f2*e)%21252;
            if(n>d)
                n=n-d;
            else
                n=n+21252-d;
            printf("Case %d: the next triple peak occurs in %d days.\n",k++,n);
        }
    }
    return 0;
}
需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值