Easy Summation
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 0 Accepted Submission(s): 0
Problem Description
You are encountered with a traditional problem concerning the sums of powers.
Given two integers n and k. Let f(i)=ik, please evaluate the sum f(1)+f(2)+...+f(n). The problem is simple as it looks, apart from the value of n in this question is quite large.
Can you figure the answer out? Since the answer may be too large, please output the answer modulo 109+7.
Given two integers n and k. Let f(i)=ik, please evaluate the sum f(1)+f(2)+...+f(n). The problem is simple as it looks, apart from the value of n in this question is quite large.
Can you figure the answer out? Since the answer may be too large, please output the answer modulo 109+7.
Input
The first line of the input contains an integer T(1≤T≤20),
denoting the number of test cases.
Each of the following T lines contains two integers n(1≤n≤10000) and k(0≤k≤5).
Each of the following T lines contains two integers n(1≤n≤10000) and k(0≤k≤5).
Output
For each test case, print a single line containing an integer modulo 109+7.
Sample Input
3 2 5 4 2 4 1
Sample Output
33 30 10
题意:给出一个n和k,求从1^k到n^k的和
解题思路:暴力,注意取模即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <cmath>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF=0x3f3f3f3f;
const int mod=1e9+7;
int n,m;
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&m,&n);
LL ans=0;
for(int i=1; i<=m; i++)
{
LL x=1;
for(int j=1; j<=n; j++)
{
x*=i;
x%=mod;
}
ans+=x;
ans%=mod;
}
printf("%lld\n",ans);
}
return 0;
}

本文介绍了一种解决幂次求和问题的算法实现,通过暴力枚举的方式计算从1^k到n^k的和,并对结果进行10^9+7取模处理。适用于n和k值较大情况下的快速求解。
589

被折叠的 条评论
为什么被折叠?



