2人竞拍商品 ,起拍价为0;2人轮流加价(不能不加),你先起手出价码。
如果最后一次加价>=低价 那么那人获胜。条件:你个人很想赢。
低价为m ,加价范围为[1-n];
问:你有没有获胜的机会并输出你第一次加价可以获胜的钱数,
如果不能获胜输出:You are ** 这都赢不了???
题解:
这题刚刚写的时候我们谁都不会博弈论 想的时候我们三人无限手撸枚举 疯狂讨论把头抓烂才找出了规律。
如果m<=n个,那么一定会赢。
如果m=n+1个,那么我无论加多少,第二个人一定会拍得。
如果m>n+1&&m<(n+1)*2 ,那么只要我加m-n-1,那么后面的就后剩下n+1个,这样无论第二个加多少,总会有剩余,而且我一定会先加到,我一定会赢。
同理我们考虑m=(n+1)*2,是不是第二个人一定会赢,我们发现了什么规律!!!!!!!如果m是(n+1)的整数倍,那么,一定是第二个人赢,只要第二人加价后使得剩下的还有m%(n+1)=k个, k为大于或等于1的整数,那么第二个人一定会加不到低价,所以我一定赢
#include<bits/stdc++.h>
using namespace std;
int main(){
int t,n,m,i;
scanf("%d",&t);
while(t--){
scanf("%d %d",&n,&m);
if(n>=m){
for(i = m;i<=n;i++){
printf("%d ",i);
}
printf("\n");
continue;
}
else{
if(m%(n+1)==0){
printf("You are ** 这都赢不了???\n");
}
else{
printf("%d\n",m%(n+1));
}
}
}
}