-
关键字:
序列池化
,长短期记忆网络
-
问题描述:使用一个长短期记忆网络训练IMDB数据集时,出现输入形状错误,错误提示:输入(X)和输入(标签)应具有相同的形状。
-
报错信息:
<ipython-input-7-fd22a596e844> in train(use_cuda, train_program, params_dirname)
41 event_handler=event_handler,
42 reader=train_reader,
---> 43 feed_order=feed_order)
/opt/conda/envs/py35-paddle1.0.0/lib/python3.5/site-packages/paddle/fluid/contrib/trainer.py in train(self, num_epochs, event_handler, reader, feed_order)
403 else:
404 self._train_by_executor(num_epochs, event_handler, reader,
--> 405 feed_order)
406
407 def test(self, reader, feed_order):
/opt/conda/envs/py35-paddle1.0.0/lib/python3.5/site-packages/paddle/fluid/contrib/trainer.py in _train_by_executor(self, num_epochs, event_handler, reader, feed_order)
481 exe = executor.Executor(self.place)
482 reader = feeder.decorate_reader(reader, multi_devices=False)
--> 483 self._train_by_any_executor(event_handler, exe, num_epochs, reader)
484
485 def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
/opt/conda/envs/py35-paddle1.0.0/lib/python3.5/site-packages/paddle/fluid/contrib/trainer.py in _train_by_any_executor(self, event_handler, exe, num_epochs, reader)
510 fetch_list=[
511 var.name
--> 512 for var in self.train_func_outputs
513 ])
514 else:
/opt/conda/envs/py35-paddle1.0.0/lib/python3.5/site-packages/paddle/fluid/executor.py in run(self, program, feed, fetch_list, feed_var_name, fetch_var_name, scope, return_numpy, use_program_cache)
468
469 self._feed_data(program, feed, feed_var_name, scope)
--> 470 self.executor.run(program.desc, scope, 0, True, True)
471 outs = self._fetch_data(fetch_list, fetch_var_name, scope)
472 if return_numpy:
EnforceNotMet: Enforce failed. Expected framework::slice_ddim(x_dims, 0, rank - 1) == framework::slice_ddim(label_dims, 0, rank - 1), but received framework::slice_ddim(x_dims, 0, rank - 1):31673 != framework::slice_ddim(label_dims, 0, rank - 1):128.
Input(X) and Input(Label) shall have the same shape except the last dimension. at [/paddle/paddle/fluid/operators/cross_entropy_op.cc:37]
PaddlePaddle Call Stacks:
- 问题复现:在构建一个长短期记忆网络时,首先使用
fluid.layers.fc
定义了一个全连接层,然后又使用fluid.layers.dynamic_lstm
创建了一个长短期记忆单元,最后使用使用这个两个进行分类输出,结果就会出现上面的错误,错误代码如下:
emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
fc1 = fluid.layers.fc(input=emb, size=hid_dim)
lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
prediction = fluid.layers.fc(input=[fc1, lstm1], size=class_dim, act='softmax')
- 解决问题:搭建一个长短期记忆网络时,在执行最好一层分类器前还要经过一个序列进行池化的接口,将上面的全连接层和长短期记忆单元的输出全部时间步的特征进行池化,最后才执行分类器输出。正确代码如下:
emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
fc1 = fluid.layers.fc(input=emb, size=hid_dim)
lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
fc_last = fluid.layers.sequence_pool(input=fc1, pool_type='max')
lstm_last = fluid.layers.sequence_pool(input=lstm1, pool_type='max')
prediction = fluid.layers.fc(input=[fc_last, lstm_last], size=class_dim, act='softmax')