飞桨新一代框架3.0正式发布:加速大模型时代的技术创新与产业应用

人工智能技术日新月异,深度学习框架作为技术底座深刻影响着算法创新的速度与产业落地的深度。飞桨框架以五大核心突破回应时代命题,正式发布3.0版本。飞桨框架3.0实现了从底层硬件适配到顶层开发体验的全面进化,在训练效率、性能、兼容性等关键指标上建立新标杆,作为支撑千行百业智能化转型的"AI操作系统",此次升级不仅是技术参数的迭代,更是面向大模型工业化生产范式的革命性突破。无论是前沿算法研究还是产业级大模型落地,飞桨框架3.0都将成为开发者的首选利器。

作为中国首个自主研发的产业级深度学习平台,飞桨一直坚持开源路线,支撑产业智能化升级。2025年4月1日,飞桨框架迎来重大更新,发布飞桨框架3.0正式版。飞桨框架3.0版本不仅延续了飞桨框架2.0系列动静统一、训推一体的特性,更在自动并行、神经网络编译器、高阶自动微分等方面取得突破,为大模型时代的技术创新与产业应用提供了强大支撑,为开发者打造了一站式、高性能的深度学习开发体验。

飞桨框架3.0具备以下五大新特性
1)动静统一自动并行:通过少量的张量切分标记,即可自动完成分布式切分信息的推导,Llama预训练场景减少80%的分布式相关代码开发。
2)大模型训推一体:依托高扩展性的中间表示(PIR)从模型压缩、推理计算、服务部署、多硬件推理全方位深度优化,支持文心4.5、文心X1等多款主流大模型,DeepSeek-R1满血版单机部署吞吐提升一倍。
3)科学计算高阶微分:通过高阶自动微分和神经网络编译器技术,微分方程求解速度比PyTorch快115%。
4)神经网络编译器:通过自动算子自动融合技术,无需手写CUDA等底层代码,部分算子执行速度提升4倍,模型端到端训练速度提升27.4%。
5)异构多芯适配:通过对硬件接入模块进行抽象,降低异构芯片与框架适配的复杂度,兼容硬件差异,初次跑通所需适配接口数比PyTorch减少56%,代码量减少80%。

背景概述

在大模型时代,深度学习框架的重要性愈发凸显,成为推动人工智能技术发展的核心引擎。算法、算力、数据作为人工智能技术的三大要素,其相互作用与协同发展不断催生着新的突破。越来越多的实例证明,算法创新能够发挥出更为显著的威力。DeepMind的AlphaFold3通过动态扩散算法突破蛋白质结构预测精度,已成功应用于抗疟疾等药物分子设计;DeepSeek通过算法创新,成功提升了DeepSeek V3模型的性价比,大幅降低了训练成本。这些突破性进展表明,算法创新正在重构技术发展的成本曲线。
然而,算法创新并非易事,当前算法工程师和科研人员在使用现有深度学习框架进行算法创新时,仍面临诸多挑战。
1)大模型分布式开发门槛高:大模型参数规模庞大,其分布式训练需使用复杂的并行策略,包括数据并行、张量并行、参数分片并行、流水线并行、序列并行、专家并行等。大模型开发中,如何实现多种并行策略的高效协同已成为关键瓶颈。
2)模型推理部署困难重重:由于算法训练和推理任务的计算、通信存在较大差别,算法工程师在完成模型算法创新后,往往难以直接应用于推理部署,需要大量的工程开发工作。
3)前沿模型架构灵活多变:科学智能(AI for Science)等新兴领域的快速发展,对深度学习框架提出了新的要求,包括求解复杂微分方程所需的高阶自动微分、傅里叶变换等科学计算操作、复数的高效运算等。
4)模型极致性能优化难度大:以大模型为代表的很多场景对训练推理速度有严苛要求,为突破计算瓶颈,工程实践中常需通过手写CUDA内核代码进行性能优化,这对算法工程师的底层编程能力提出了极高要求。
5)异构芯片适配成本高:AI应用场景丰富多样、算力需求巨大,单一芯片难以满足业务需求。而不同芯片之间的硬件架构、软件栈成熟度、开发接口差异大,业务适配成本高、软硬协同优化难。

为此,飞桨新一代框架3.0应运而生:该版本提供了丰富的深度学习相关的各种开发接口表示层专注于计算图的表达与转换,通过高可扩展中间表示PIR,实现动转静、自动微分、自动并行、算子组合以及计算图优化等核心功能;调度层负责对代码或计算图进行智能编排与高效调度,支持动态图和静态图两种不同的执行模式;算子层由神经网络编译器CINN和算子库PHI共同构成,涵盖了张量定义、算子定义、算子自动融合和算子内核实现等关键功能;适配层则用于实现与底层芯片适配,包括设备管理、算子适配、通信适配以及编译接入等功能。
在这里插入图片描述
飞桨框架3.0架

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值