时间序列数据在各行业和领域中无处不在,如物联网传感器的测量结果、每小时的销售额业绩、金融领域的股票价格等等,都是时间序列数据的例子。时间序列预测就是运用历史的多维数据进行统计分析,推测出事物未来的发展趋势。
为加快企业智能化转型进程,降低时序技术应用门槛,飞桨持续进行产品技术打磨,推出了基于启发式搜索和集成学习的高精度时序模型PP-TS,在电力场景数据集上经过验证,精度提升超20%。
PP-TS今天正式上线飞桨AI套件PaddleX!源码全部开放!您可以在AI Studio(星河社区)云端或者PaddleX本地端尽情探索!尝试结合到真实的业务场景中去!在工具箱模式中,您只需提供一个场景下的历史数据,PP-TS就能为您准确预测出该场景下未来一段时间内的数据情况。
数据
训练
评估测试
除PP-TS外,飞桨也提供了8种业界领先的时序预测方法,即TimesNet, TiDE, PatchTST, DLinear, RLinear, NLinear, Nonstationary Transformer和XGBoost以便您对比使用。
PP-TS核心思想
基于集成方法,相较于传统时序预测,PP-TS预测更加准确随着5G时代的到来,企业逐步进入数字化转型新阶段,面临越来越多复杂时间序列预测场景,如设备剩余寿命预测、电力负荷预测等。在

飞桨推出PP-TS,一种基于集成学习的高精度时序模型,用于降低企业智能化转型中的时间序列预测门槛。它通过启发式搜索和多种单模型集成,显著提升电力场景预测精度。在PaddleX中,用户可以个性化定制和评估模型效果。
最低0.47元/天 解锁文章
1840

被折叠的 条评论
为什么被折叠?



