一站式完成车牌识别任务:从模型优化到端侧部署

文章介绍了基于PaddleOCR的车牌识别系统,使用PP-OCRv3模型在CCPD数据集上进行微调,实现了高精度和小模型大小。项目提供了端到端的解决方案,包括模型训练、优化和部署,特别适合边缘和端侧应用。通过量化训练,模型推理速度得到提升,且在骁龙855芯片上预测速度为224ms。

交通领域的应用智能化不断往纵深发展,其中最为成熟的车牌识别早已融入人们的日常生活之中,在高速公路电子收费系统、停车场等场景中随处可见。一些企业在具体业务中倾向采用开源方案降低研发成本,但现有公开的方案中少有完成端到端的车牌应用范例

本次飞桨产业实践范例库开源车牌识别场景应用,提供了从技术方案、模型训练优化,到模型部署的全流程可复用方案,降低产业落地门槛。

项目链接

https://github.com/PaddlePaddle/PaddleOCR/tree/dygraph/applications

所有源码及教程均已开源。欢迎大家使用,star鼓励~

基于PaddleOCR的轻量级车牌识别系统

场景难点

本范例解决车牌识别任务,需完成车牌检测模型和车牌识别模型的微调与串联,并部署到端侧设备中。项目包含以下难点:

  • 车牌在图像中的尺度差异大、在车辆上的悬挂位置不固定;
  • 车牌图像质量层次不齐: 角度倾斜、图片模糊、光照不足、过曝等问题严重;
  • 边缘和端测场景应用对模型大小有限制,推理速度有要求。
图1
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值