本文提出了针对单阶段半监督目标检测任务的Ambiguity-Resistant Semi-supervised Learning(ARSL)算法,创新地提出了两个通用的单阶段半监督检测模块:Joint-Confidence Estimation(JCE)和Task-Separation Assignment(TSA)。JCE通过联合分类和定位任务的置信度评估伪标签质量。TSA基于教师模型预测的联合置信度将样本划分为正样本、负样本和模棱两可的候选样本,并进一步在候选样本中分别为分类、定位任务挑选潜在正样本。
背景及动机
基于深度学习的目标检测算法通常依赖大规模标注数据才能发挥出最大的威力。为了节省标注人力,降低数据标注成本,半监督目标检测(SSOD)应运而生。半监督目标检测旨在利用少量的标注数据和大量的无标注数据进行模型训练,在最新进展中,其主要依赖于Mean-Teacher框架以及Pseudo-labeling技术,即用教师模型在无标注数据上生成的伪标签(Pseudo labels)训练学生模型,再基于学生模型在时序上的权重均值来更新教师模型。
图1.在基础半监督框架下,单阶段检测器(FCOS)的提升弱于两阶段方法(Faster RCNN)
然而基于该流程,我们发现相比于两阶段检测器(如Faster RCNN),单阶段检测算法(如 FCOS)仅能取得相对有限的提升。是什么限制了

文章提出ARSL算法,包括JCE和TSA模块,用于解决单阶段半监督目标检测中的筛选和分配歧义性问题。JCE通过联合分类和定位任务评估伪标签质量,而TSA改进了样本分配策略。实验显示ARSL在COCO数据集上优于现有SOTA方法。
最低0.47元/天 解锁文章
1826

被折叠的 条评论
为什么被折叠?



