SOTA级发丝抠图模型PP-Matting重磅开源,支持多场景精细化分割!

9f085adaf37290e041bc2be87d066e0e.gif

你还在用P.S.等商业软件,滑着鼠标,一点点勾勒图像边缘完成抠图嘛?有些大神可能会说:我可以用蒙板、通道等等高端操作实现超快抠图!但如果能有一个软件可以实现智能全自动抠图,完美保留发丝、树叶等精细边缘,还完全免费,甚至代码全部开源——它不香嘛?

38dbdc81ace6ca7cb63071f78768f9e1.gif 92b515e0956c203453d97f8b88db52ec.gif

9a8714795a7b38ab4f29022d87a2025c.gif

图1 Matting效果展示

这绝对不是画饼,近期一项被称为Matting的算法可算是火爆了AI界,相比于单纯的图像分割技术,它可以根据透明度更进一步的对图像的像素进行分类(如下图),不仅图像中的主体目标被精准抠出,连超精细的毛绒边缘和透明玻璃杯都可以完美抠出!传统的图像分割抠图策略是完全不可达到的,懂行的人看到这里是不是已经激动地汗毛直立了?

a4bb6a3fd1ec5d5924ee0b66b80ce275.png

图2 Matting原理说明

小编赶紧给大家贴上项目链接地址

点击文末阅读原文即可GET

墙裂推荐小伙伴们star收藏!

https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.5/Matting

本项目是PaddleSeg团队推出的高性能PP-Matting系列模型,它根据用户对图像分辨率的需求,提供最相匹配的模型,精度上能够在Trimap Free方向达到SOTA级别。此外,本项目还充分考虑了实际部署环境,针对边缘端、服务端等对模型体积等指标进行相应优化。

不仅如此,PaddleSeg团队还特别针对人像进行特殊优化处理,提供了不同场景下的预训练模型及部署模型,既可直接部署使用,也可根据具体任务进行微调,简直贴心到家!

ee8a24166e366f8623511c280628c73c.png

图3 PP-Matting 算法精度说明

PP-Matting已经被开发者们广泛应用在各种场景中,如有爱的萌宠开发者小伙伴们已经实现了”猫像抠图”,给自己可爱的小猫咪DIY了各种酷炫写真。

12751d405462e32e05891d7ef2fac67e.png

图4 “猫像抠图”示例

此外,有开发者基于Matting模型,开发了一键上传图片进行抠图的Web Demo,同样欢迎大家在PaddleSeg的github页面访问使用。链接如下:

https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.5/Matting

6b715f201bbceeee82fdb611aa5e97b7.gif

图5 Web端Matting示例

当然,看到这么好的技术,硬核的小伙伴会关注技术上的实现。一般来说,基于深度学习的Matting分为两大类:

  • 一种是基于辅助信息输入。即除了原图和标注图像外,还需要输入其他的信息辅助预测,如Trimap、背景、交互点等作为辅助信息。

  • 一种是不依赖任何辅助信息,直接实现Alpha预测。

141defa0880cc89c71ea4a6252f6b3e5.png

图6 Matting原理说明

而PP-Matting设计的初衷,就是为了能够方便用户快速实现抠图,因此用户在使用时不依赖辅助信息的输入,便可直接获得预测的结果。为了实现更高的效果,PP-Matting设计了Semantic context branch (SCB)、high-resolution detail branch (HRDB)两个分支,分别进行语义和细节预测,通过引导流机制,进行语义引导下的高分辨率细节预测,进而实现Trimap-free高精度图像抠图。

f58712d8148c619d35586ff8a3d29166.png

图7 PP-Matting原理示意图

正是由于这一系列的设计,最终让PP-Mattig在不依靠其他输入的情况下,依旧获得了更高精度的预测结果。

欢迎感兴趣的小伙伴们

扫码加入技术交流群

一起体验Matting的技术魅力

917e30a13224e4d9985d2d390094dc54.png

图像集引用说明:

图1、图2源于公开数据集:Distinctions-646

图4源于免费版权图片库https://www.pexels.com/zh-cn/

340d60a0dd3bc4726de02c85f2010685.gif

关注【飞桨PaddlePaddle】公众号

获取更多技术内容~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值