最近,各大视频平台实时更新着冬奥赛场上的精彩瞬间集锦,谷爱凌、武大靖、苏翊鸣等运动健儿们勇闯佳绩,可喜可贺!在为中国体育的强大实力感动、欣喜的同时,我们也关注到了体育竞技背后的一些AI产业应用,比如通过动作识别技术辅助运动员日常训练和比赛打分,利用智能分类与自动化剪辑等AI技术大幅降低体育视频内容处理的人力和时间成本等。
为了让大家深入了解这些AI技术在产业中的应用,降低AI落地门槛,百度飞桨、百度智能云、大连理工大学刘胜蓝副教授联合推出产业实践范例,在花样滑冰动作识别、多模态体育视频分类、足球视频精彩片段剪辑三个经典场景,提供了从数据准备,方案设计,模型优化部署的全流程教程,深入浅出详解产业落地方案,手把手教用户进行代码实践。

⭐项目链接⭐
https://github.com/PaddlePaddle/awesome-DeepLearning
所有源码及教程均已开源,欢迎大家使用,star鼓励~
深度学习技术赋能体育赛事的
三大典型范例
1、花样滑冰动作识别
花样滑冰的运动轨迹复杂性强、速度快、类别多,这对识别任务来说是极大的挑战。本范例首次将基于人体骨架关键点的人类动作识别算法 ST-GCN(时空图卷积网络模型),运用于花样滑冰动作识别,可以实时地识别视频中花样滑冰运动员的技术动作并添加标注予以分类,在

最低0.47元/天 解锁文章
1852

被折叠的 条评论
为什么被折叠?



