POJ 1682 Clans on the Three Gorges

本文介绍了一个关于在三个峡谷间合理搭建桥梁以连接不同部落的算法问题。通过动态规划的方法,解决了三维空间中桥梁搭建的成本最小化问题。

Description
On the banks of the Three Gorges of the Yangtze River live some old clans. For historical reasons, clans on the same gorge hate each other, and conflicts often arise between them for lands and recourses. On the contrary they have a long and deep friendship with the clans on the other gorges. But it’s difficult for them to travel to the other sides of the gorge because of the torrent flow of the Yangtze River.
One day they decide to build suspension bridges between the gorges. The gorges have three banks (figure 1), and each bank is rolling so clans have different altitude. Every clan will not share a same bridge with other clans on the same bank, so there must be at least one bridge for each clan. And for safety reason, bridges are not allowed to cross each other overhead, or if a bridge collapsed, it would fall on another one. Experts point out that if the altitudes of the two ends of a bridge are different, the bridge will be troublesome to build and cost more. It’s estimated that the cost of a bridge is equal to the fall of the ends of the bridge. The clans are not rich, so they employ you to find a solution to minimize the cost to build the suspension bridges to satisfy their demand.
As show in figure 1, the three gorges are named X, Y and Z respectively. A clan is represented by a cycle, with its name and altitude in. Clans on gorge X are named x1, x2… xn in counter-clockwise order. Those on gorge Y and gorge Z are y1, y2… ym and z1, z2? zk in counter-clockwise order too. A bridge is represented by a line between two clans with its cost on it. No two lines can intersect and no clan has zero degree according to the description of this problem.
For example, figure 2 is invalid solution because the two bridges intersect. Figure 3 is also invalid for the reason that clan y1 doesn’t has a bridge for its own. Figure 1 and Figure 4 both are valid solutions for there are no intersected bridges or isolated clan in these solutions. The cost of a solution is the sum of all the costs of the bridges in the solution. And the cost of a bridge is equal to the absolute value of the difference of the heights of the two ends. So figure 1 has cost 11 against 14 of figure 4. It’s clear that figure 1 is a better solution. In fact, it’s one of the best solutions. You are required to write a program to find the minimum cost.


【题目分析】
蒟蒻看到之后不会做,只会解决二维的问题。然后就借鉴了别人的题解(说的好听,就是ctrl+c ctrl+v)。这道题的思路大概就是这样:
1、两两解决,共三组。dp[i][j]表示一面匹配到i,另一面匹配到j的情况。
2、将这三组合起来。
合并的时候由于不能交叉所以只有几种情况,然后写出来(找到最小值),就可以了。


【代码】

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <cmath>
using namespace std;
int n,m,p,a[150],b[150],c[150],xz[150][150],xy[150][150],yz[150][150],ans,tt;
void read()
{
    scanf("%d%d%d",&m,&n,&p);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    for(int i=1;i<=m;i++) scanf("%d",&b[i]);
    for(int i=1;i<=p;i++) scanf("%d",&c[i]);
    for(int i=0;i<150;i++)
        for(int j=0;j<150;j++)
            xz[i][j]=xy[i][j]=yz[i][j]=999999;
    ans=999999;
}

void go()
{
    xz[0][p+1]=0;
    for(int i=1;i<=n;i++)
        for(int j=p;j>=1;j--)
            xz[i][j]=min(min(xz[i-1][j+1],xz[i-1][j]),xz[i][j+1])+abs(a[i]-c[j]);
    xy[n+1][0]=0;
    for(int i=n;i>=1;i--)
        for(int j=1;j<=m;j++)
            xy[i][j]=min(min(xy[i+1][j-1],xy[i+1][j]),xy[i][j-1])+abs(a[i]-b[j]);
    yz[m+1][0]=0;
    for(int i=m;i>=1;i--)
        for(int j=1;j<=p;j++)
            yz[i][j]=min(min(yz[i+1][j-1],yz[i+1][j]),yz[i][j-1])+abs(b[i]-c[j]);
    for(int i=0;i<=n+1;i++)
        for(int j=0;j<=m+1;j++)
            for(int k=0;k<=p+1;k++)
            {
                ans=min(ans,xy[i][j]+xz[i][k]+yz[j][k]);
                ans=min(ans,xy[i][j]+xz[i][k]+yz[j+1][k]);  
                ans=min(ans,xy[i+1][j]+xz[i][k]+yz[j][k]);  
                ans=min(ans,xy[i][j]+xz[i][k+1]+yz[j][k]);
                ans=min(ans,xy[i+1][j]+xz[i][k]+yz[j+1][k]);  
                ans=min(ans,xy[i][j]+xz[i][k+1]+yz[j+1][k]);  
                ans=min(ans,xy[i+1][j]+xz[i][k+1]+yz[j][k]);
                ans=min(ans,xy[i+1][j]+xz[i][k+1]+yz[j+1][k]);
            }
    printf("%d\n",ans);
}

int main()
{
    scanf("%d",&tt);
    while(tt--)
    {
        read();
        go();
    }
    return 0;
}
计及光伏电站快速无功响应特性的分布式电源优化配置方法(Matlab代码实现)内容概要:本文提出了一种计及光伏电站快速无功响应特性的分布式电源优化配置方法,并提供了基于Matlab的代码实现。该方法在传统分布式电源配置基础上,充分考虑了光伏电站通过逆变器实现的快速无功调节能力,以提升配电网的电压稳定性与运行效率。通过建立包含有功、无功协调优化的数学模型,结合智能算法求解最优电源配置方案,有效降低了网络损耗,改善了节点电压质量,增强了系统对可再生能源的接纳能力。研究案例验证了所提方法在典型配电系统中的有效性与实用性。; 适合人群:具备电力系统基础知识和Matlab编程能力的电气工程专业研究生、科研人员及从事新能源并网、配电网规划的相关技术人员。; 使用场景及目标:①用于分布式光伏等新能源接入配电网的规划与优化设计;②提升配电网电压稳定性与电能质量;③研究光伏逆变器无功补偿能力在系统优化中的应用价值;④为含高比例可再生能源的主动配电网提供技术支持。; 阅读建议:建议读者结合Matlab代码与算法原理同步学习,重点理解目标函数构建、约束条件设定及优化算法实现过程,可通过修改系统参数和场景设置进行仿真对比,深入掌握方法的核心思想与工程应用潜力。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值