Scheduling in Heterogeneous Computing Environments for Proximity Queries

本文介绍了一种基于线性规划的创新调度算法,该算法利用异构多核架构(如CPU和GPU)加速各种近距离查询任务。通过提出一个简单而精确的模型来衡量不同计算任务的预期运行时间,算法最小化了资源的最大使用时间。适用于五个不同应用领域的多种查询,性能提升显著,尤其在资源异构性增加时。方法在单个六核心CPU上仅使用的情况下,性能提升了一个数量级。

Scheduling in Heterogeneous Computing Environments for Proximity Queries

May 14th, 2013

Abstract:

We present a novel, Linear Programming (LP) based scheduling algorithm that exploits heterogeneous multi-core architectures such as CPUs and GPUs to accelerate a wide variety of proximity queries. To represent complicated performance relationships between heterogeneous architectures and different computations of proximity queries, we propose a simple, yet accurate model that measures the expected running time of these computations. Based on this model, we formulate an optimization problem that minimizes the largest time spent on computing resources, and propose a novel, iterative LP-based scheduling algorithm. Since our method is general, we are able to apply our method into various proximity queries used in five different applications that have different characteristics. Our method achieves an order of magnitude performance improvement by using four different GPUs and two hexa-core CPUs over using a hexa-core CPU only. Unlike prior scheduling methods, our method continually improves the performance, as we add more computing resources. Also, our method achieves much higher performance improvement compared with prior methods as heterogeneity of computing resources is increased. Moreover, for one of tested applications, our method achieves even higher performance than a prior parallel method optimized manually for the application. We also show that our method provides results that are close (e.g., 75%) to the performance provided by a conservative upper bound of the ideal throughput. These results demonstrate the efficiency and robustness of our algorithm that have not been achieved by prior methods.

(Duksu Kim, Jinkyu Lee, Junghwan Lee, Insik Shin, John Kim and Sung-eui Yoon: “Scheduling in Heterogeneous Computing Environments for Proximity Queries”, IEEE Transactions on Visualization and Computer Graphics, to appear, 2013. [WWW])

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值