盛金公式
最近学习了几篇编程解线代方面的文章,为解多次方程无意在网上发现了一个据称可解所有实系数三次方程的"盛金公式",转贴如下:
一元三次方程aX3+bX2+cX+d=0,(a,b,c,d∈R,且a≠0)。
重根判别式:
A=b2-3ac;
B=bc-9ad;
C=c2-3bd,
总判别式:
Δ=B2-4AC。
当A=B=0时,盛金公式①(WhenA=B=0,Shengjin’s Formula①):
X1=X2=X3=-b/(3a)=-c/b=-3d/c。
当Δ=B2-4AC>0时,盛金公式②(WhenΔ=B2-4AC>0,Shengjin’s Formula②):
X1=(-b-(Y11/3+Y21/3))/(3a);
X2,3=(-2b+Y11/3+Y21/3±31/2 (Y11/3-Y21/3)i)/(6a);
其中Y1,2=Ab+3a (-B±(B2-4AC)1/2)/2,i2=-1。
当Δ=B2-4AC=0时,盛金公式③(WhenΔ=B2-4AC =0,Shengjin’s Formula③): <