Python生成马赛克图片

import ctypes
import re
import numpy as np
from numpy import ctypeslib
import os
import cv2
import multiprocessing as mp
from multiprocessing.sharedctypes import RawArray
from scipy.spatial.distance import euclidean
from tqdm import tqdm

IMG_DIR = "images"
RATIO = 10

def resize(im, tile_row, tile_col):
    shape_row = im.shape[0]
    shape_col = im.shape[1]
    shrink_ratio = min(shape_row/tile_row, shape_col/tile_col)
    resized = cv2.resize(im, (int(shape_col/shrink_ratio)+1, int(shape_row/shrink_ratio)+1), interpolation=cv2.INTER_CUBIC)
    result = resized[:tile_row, :tile_col,:]
    return result

def img_distance(im1, im2):
    if im1.shape != im2.shape:
        msg = "shapes are different {} {}".format(im1.shape, im2.shape)
        raise Exception(msg)
    array1 = im1.flatten()
    array2 = im2.flatten()
    dist = euclidean(array1, array2)
    return dist

def load_all_images(tile_row, tile_col):
    img_dir = IMG_DIR
    filenames = os.listdir(img_dir)
    result = []
    print(len(filenames))
    for filename in tqdm(filenames):
        if not re.search(".jpg", filename, re.I):
            continue
        try:
            filepath = os.path.join(img_dir, filename)
            im = cv2.imread(filepath)
            row = im.shape[0]
            col = im.shape[1]
            im = resize(im, tile_row, tile_col)
            result.append(np.array(im))
        except Exception as e:
            msg = "error with {} - {}".format(filepath, str(e))
            print(msg)
    return np.array(result, dtype=np.uint8)

def find_closest_image(q, shared_tile_images, tile_images_shape, shared_result, img_shape, tile_row, tile_col):
    tile_images_array = np.frombuffer(shared_tile_images, dtype=np.uint8)
    tile_images = tile_images_array.reshape(tile_images_shape)
    while True:
        [row, col, im_roi] = q.get()
        print(row)
        min_dist = float("inf")
        min_img = None
        for im in tile_images:
            dist = img_distance(im_roi, im)
            if dist < min_dist:
                min_dist = dist
                min_img = im
        im_res = np.frombuffer(shared_result, dtype=np.uint8).reshape(img_shape)
        im_res[row:row+tile_row,col:col+tile_col,:] = min_img
        q.task_done()

def get_tile_row_col(shape):
    if shape[0] >= shape[1]:
        return [120, 90]
    else:
        return [90, 120]

def generate_mosaic(infile, outfile):
    img = cv2.imread(infile)
    tile_row, tile_col = get_tile_row_col(img.shape)
    img_shape = list(img.shape)
    img_shape[0] = int(img_shape[0]/tile_row) * tile_row * RATIO
    img_shape[1] = int(img_shape[1]/tile_col) * tile_col * RATIO
    img = cv2.resize(img, (img_shape[1], img_shape[0]), interpolation=cv2.INTER_CUBIC)
    print(img_shape)
    im_res = np.zeros(img_shape, np.uint8)
    tile_images = load_all_images(tile_row, tile_col)
    shared_tile_images = mp.sharedctypes.RawArray(ctypes.c_ubyte, len(tile_images.flatten()))
    tile_images_shape = tile_images.shape
    np.copyto(np.frombuffer(shared_tile_images, dtype=np.uint8).reshape(tile_images_shape), tile_images)
    shared_result = mp.sharedctypes.RawArray(ctypes.c_ubyte, len(im_res.flatten()))

    q = mp.JoinableQueue()
    for i in range(5):
        p = mp.Process(target=find_closest_image,
            args=(q, shared_tile_images, tile_images_shape, shared_result, img_shape, tile_row, tile_col),
            daemon=True)
        p.start()
        print("started process")

    for row in range(0, img_shape[0], tile_row):
        for col in range(0, img_shape[1], tile_col):
            roi = img[row:row+tile_row,col:col+tile_col,:]
            q.put([row, col, roi])

    q.join()
    cv2.imwrite(outfile, np.frombuffer(shared_result, dtype=np.uint8).reshape(img_shape))

if __name__ == "__main__":
    generate_mosaic("test.jpg", "out.jpg")

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值