和杜教筛苦战三天
WA 6次 MLE7次 TLE3次 RE1次 AC2次
总结一下emm
确实是杜教筛板子题
要注意的点就是
1.a,b本身是int范围 但是a*b超出了int范围 需要用long long 保存
2.存i*phi(i)的值尽量用map 或者 unordered_map 否则会RE
其实比赛的时候已经推出公式了
但是不会用杜教筛 就放弃了emm
川桑写的2019CCPC网络赛题解:https://blog.youkuaiyun.com/ayyyyy_zc/article/details/100051214
川桑tql~~~
日常笔记:
杜教筛知识补充:https://www.cnblogs.com/peng-ym/p/9446555.html
数论公式:https://blog.youkuaiyun.com/weixin_42431507/article/details/97948465
AC代码:
#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int mod = 1e9 + 7;
const int inv6 = 166666668;
const int inv2 = 500000004;
const int maxn = 1000005;
int prime[maxn], cnt;
ll ans[maxn],phi[maxn];
bool vis[maxn];
unordered_map<ll, ll>res;
ll mul(int a, int b)
{
return (ll)a * b % mod;
}
void getphi()
{
phi[1] = 1;cnt=0;
for (int i = 2; i <= maxn; i++) {
if (!vis[i]) {
prime[++cnt] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= cnt && prime[j]*i <= maxn; j++) {
vis[prime[j]*i] = 1;
if (i % prime[j] == 0) {
phi[prime[j]*i] = phi[i] * prime[j];
break;
} else {
phi[prime[j]*i] = phi[i] * (prime[j] - 1);
}
}
}
for (int i = 1; i <= maxn; i++) {
ans[i] = (ans[i - 1] + 1ll*mul(i, phi[i])) % mod;
}
}
ll sumk(int n)
{
ll mm = mul(mul(n, n + 1), 2 * n + 1);
mm = mul(mm, inv6);
return mm;
}
ll run(ll n)
{
if (n < maxn) {
return ans[n];
}
if (res[n]) {
return res[n];
}
ll ret =sumk(n);
for (int l = 2, r; l <= n; l = r + 1) {
r = n / (n / l);
ret = ret - mul((l + r) * (r - l + 1ll) / 2 % mod, run(n / l)) % mod ;
ret = (ret % mod + mod) % mod;
}
return res[n] = ret;
}
int main()
{
getphi();
int t, n, a, b;
scanf("%d", &t);
while (t--) {
scanf("%d%d%d", &n, &a, &b);
printf("%lld\n", mul((run(n) - 1 + mod) % mod, inv2 ) % mod);
}
return 0;
}
PS:看大佬代码的时候学习了新的求逆元方法
const int mod = 1e9 + 7;
const int inv2 = (mod + 1) / 2;
const int inv6 = (mod + 1) / 6;