dp函数 超时
class Solution(object):
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
m = len(grid)
n = len(grid[0])
return self.dp(grid, m - 1, n - 1)
def dp(self, grid, i, j):
if i == 0 and j == 0:
return grid[0][0]
if i < 0 or j < 0:
return 99999
res = min(self.dp(grid, i - 1, j), self.dp(grid, i, j - 1)) + grid[i][j]
return res
dp函数剪枝 超时
class Solution(object):
import sys
sys.setrecursionlimit(1000000)
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
m = len(grid)
n = len(grid[0])
return self.dp(grid, m - 1, n - 1)
def dp(self, grid, i, j):
m = len(grid)
n = len(grid[0])
res = 999999
memo = [[-1 for i in range(m)] for j in range(n)]
if i == 0 and j == 0:
return grid[0][0]
if i < 0 or j < 0:
return res
if memo[i][j] != -1:
return memo[i][j]
memo[i][j] = min(self.dp(grid, i - 1, j), self.dp(grid, i, j - 1)) + grid[i][j]
return memo[i][j]
dp数组,表示为从[0,0]走到[i,j]的路径和
class Solution(object):
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
m = len(grid)
n = len(grid[0])
dp = [[0 for i in range(n)] for j in range(m)]
dp[0][0] = grid[0][0]
for i in range(1, m):
dp[i][0] = dp[i - 1][0] + grid[i][0]
for j in range(1, n):
dp[0][j] = dp[0][j - 1] + grid[0][j]
for i in range(1, m):
for j in range(1, n):
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
return dp[m - 1][n - 1]
if __name__ == '__main__':
grid = [[1, 2, 3], [4, 5, 6]]
Sol = Solution()
res = Solution.minPathSum(Sol, grid)
print(res)