由于是从第一行任意一个位置开始下降,所以先初始化第一行的值
每个元素有三种选择可以到达
最左边的元素可以从[i-1][j],[i-1][j+1] 即上方,右上方获得
最右边的元素可以从[i-1][j-1],[i-1][j] 即左上方,上方获得
中间元素可以从[i-1][j-1],[i-1][j] ,[i-1][j+1]即左上方,上方,右上方获得
class Solution(object):
def minFallingPathSum(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: int
"""
m = len(matrix)
n = len(matrix[0])
dp = [[999999 for i in range(n)] for j in range(m)]
for j in range(0, n):
dp[0][j] = matrix[0][j]
for i in range(1, m):
for j in range(n):
if j == 0:
dp[i][j] = min(dp[i - 1][j], dp[i - 1][j + 1]) + matrix[i][j]
elif j == n - 1:
dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j]) + matrix[i][j]
else:
dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i - 1][j + 1]) + matrix[i][j]
res = min(dp[m - 1])
return res
if __name__ == '__main__':
matrix = [[-19, 57], [-40, -5]]
Sol = Solution()
res = Solution.minFallingPathSum(Sol, matrix)
print(res)