numpy API: np.random.multivariate_normal

本文介绍如何使用numpy库生成多维正态分布的随机样本,并提供了具体参数说明及示例代码。主要讨论了mean、cov等参数的作用,以及size、check_valid和tol选项的用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Parameters:
mean : 1-D array_like, of length N

Mean of the N-dimensional distribution.

cov : 2-D array_like, of shape (N, N)

Covariance matrix of the distribution. It must be symmetric and positive-semidefinite for proper sampling.

size : int or tuple of ints, optional

Given a shape of, for example, (m,n,k), m*n*k samples are generated, and packed in an m-by-n-by-k arrangement. Because each sample is N-dimensional, the output shape is (m,n,k,N). If no shape is specified, a single (N-D) sample is returned.

check_valid : { ‘warn’, ‘raise’, ‘ignore’ }, optional

Behavior when the covariance matrix is not positive semidefinite.

tol : float, optional

Tolerance when checking the singular values in covariance matrix.

Returns:
out : ndarray

The drawn samples, of shape size, if that was provided. If not, the shape is (N,).

In other words, each entry out[i,j,…,:] is an N-dimensional value drawn from the distribution.


例子:

>>> mean = (1, 2)
>>> cov = [[1, 0], [0, 1]]
>>> x = np.random.multivariate_normal(mean, cov, (3, 3))
#这里的最后一维代表组成多维随机向量的随机变量的个数
x.shape
(3, 3, 2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值