Google advances AI with ‘one model to learn them all

谷歌发布了一篇学术论文,介绍了一种名为“一模型学会所有任务”的机器学习模型,该模型能够在多种任务上表现出色,包括翻译、语言解析、语音识别、图像识别和物体检测。研究表明,当该模型接受多种任务训练时,其准确性得到了提高,尤其是在数据较少的任务上表现更佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Google quietly released an academic paper that could provide a blueprint for the future of machine learning. Called “One Model to Learn Them All,” it lays out a template for how to create a single machine learning model that can address multiple tasks well.

The MultiModel, as the Google researchers call it, was trained on a variety of tasks, including translation, language parsing, speech recognition, image recognition, and object detection. While its results don’t show radical improvements over existing approaches, they illustrate that training a machine learning system on a variety of tasks could help boost its overall performance.

For example, the MultiModel improved its accuracy on machine translation, speech, and parsing tasks when trained on all of the operations it was capable of, compared to when the model was just trained on one operation.

Google’s paper could provide a template for the development of future machine learning systems that are more broadly applicable, and potentially more accurate, than the narrow solutions that populate much of the market today. What’s more, these techniques (or those they spawn) could help reduce the amount of training data needed to create a viable machine learning algorithm.

That’s because the team’s results show that when the MultiModel is trained on all the tasks it’s capable of, its accuracy improves on tasks with less training data. That’s important, since it can be difficult to accumulate a sizable enough set of training data in some domains.

However, Google doesn’t claim to have a master algorithm that can learn everything at once. As its name implies, the MultiModel network includes systems that are tailor-made to address different challenges, along with systems that help direct input to those expert algorithms. This research does show that the approach Google took could be useful for future development of similar systems that address different domains.

It’s also worth noting that there’s plenty more testing to be done. Google’s results haven’t been verified, and it’s hard to know how well this research generalizes to other fields. The Google Brain team has released the MultiModel code as part of the TensorFlow open source project, so other people can experiment with it and find out.

Google also has some clear paths to improvement. The team pointed out that they didn’t spend a lot of time optimizing some of the system’s fixed parameters (known as “hyperparameters” in machine learning speak), and going through more extensive tweaking could help improve accuracy in the future.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值