LeetCode - Populating Next Right Pointers in Each Node II 及其变形题

 

Given a binary tree

    struct TreeLinkNode {
      TreeLinkNode *left;
      TreeLinkNode *right;
      TreeLinkNode *next;
    }

 

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.

Initially, all next pointers are set to NULL.

Note:

  • You may only use constant extra space.
  • You may assume that it is a perfect binary tree (ie, all leaves are at the same level, and every parent has two children).

 

For example,
Given the following perfect binary tree,

         1
       /  \
      2    3
     / \  / \
    4  5  6  7

 

After calling your function, the tree should look like:

         1 -> NULL
       /  \
      2 -> 3 -> NULL
     / \  / \
    4->5->6->7 -> NULL

第一个题的要求是完全二叉树,第二题没有这个要求。很显然如果没有空间复杂度的要求,O(1),这题完全可以按层次遍历的思想搞,又提到了工具方法的概念,可以先看这道题:http://blog.youkuaiyun.com/my_jobs/article/details/47665089按层次遍历。完全可以改造这个题而成。但是这两个题都要求空间复杂度为O(1)。所以此办法不行,但是可以给出代码,对这两个题完全通用:

 

    public void connect(TreeLinkNode root) {
        if (root == null) return;
        LinkedList<TreeLinkNode> queue = new LinkedList<>();
        queue.add(root);
        while (!queue.isEmpty()) {
            int len = queue.size();
            TreeLinkNode pre = null;
            for (int i = 0; i < len; i++) {
                TreeLinkNode node = queue.poll();
                if (i == 0) {
                    pre = node;
                } else {
                    pre.next = node;
                    pre = pre.next;
                }
                if (node.left != null) queue.add(node.left);
                if (node.right != null) queue.add(node.right);
            }
        }
    }


可以看出,上面的代码完全是改造出来的,所以一些常见的算法,一定烂熟于心。

 

先做第一个,比较好做。看代码就明白了:

 

    public void connect(TreeLinkNode root) {
        if (root == null) return;
        root.next = null;
        while (root.left != null) {
            TreeLinkNode p = root;
            while (p != null) {
                p.left.next = p.right;
                if (p.next != null) {
                    p.right.next = p.next.left;
                } else {
                    p.right.next = null;
                }
                p = p.next;
            }
            root = root.left;
        }
    }

这个的精髓就是,在层次迭代的时候,一定要有效的利用已经搭建好的东西,比如next指针。

 

在看第二道题,第二题就难了。

 

    public void connect(TreeLinkNode root) {
        while(root != null){
            TreeLinkNode childHead = new TreeLinkNode(0);
            TreeLinkNode p = childHead;
            while (root != null){
                if (root.left != null) { 
                    p.next = root.left; 
                    p = p.next;
                }
                if (root.right != null) { 
                    p.next = root.right; 
                    p = p.next;
                }
                root = root.next;
            }
            p.next = null;
            root = childHead.next;
        }
    }


此题比较秒的就是每层的头指针,太巧妙了。利用了链表性质!!!

 

改造题:

 

Given the following binary tree,

         1
       /  \
      2    3
       \  / \
       5  6  7

 

After calling your function, the tree should look like:

         1 -> NULL
       /   
      2 -> 3 -> NULL
     /       
    5->6->7 -> NULL


树的数据结构不变,如果当前节点是本层首个节点的话,left指针指向下层首节点,否则为空。right指针指向本层的下一个节点。万能的解法,层次遍历:

 

    public TreeNode treeToList(TreeNode root) {
    	if (root == null) return null;
    	LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
    	queue.add(root);
    	TreeNode head = new TreeNode(0);
    	while (!queue.isEmpty()) {
    		int len = queue.size();
    		TreeNode pre = null;
    		for (int i = 0; i < len; i++) {
    			TreeNode node = queue.poll();
    			if (node.left != null) queue.add(node.left);
    			if (node.right != null) queue.add(node.right);
    			node.left = null;
    			node.right = null;
    			if (i == 0) {
    				pre = node;
    				head.left = pre;
    				head = head.left;
    			} else {
    				pre.right = node;
    				pre = pre.right;
    			}
    		}
    	}
    	return root;
    }


相比上面两道题有next指针可以利用,这个有没有了,必须先本下层的节点都保存了才能修改本层的节点关系!!!

 

1. Two Sum 2. Add Two Numbers 3. Longest Substring Without Repeating Characters 4. Median of Two Sorted Arrays 5. Longest Palindromic Substring 6. ZigZag Conversion 7. Reverse Integer 8. String to Integer (atoi) 9. Palindrome Number 10. Regular Expression Matching 11. Container With Most Water 12. Integer to Roman 13. Roman to Integer 14. Longest Common Prefix 15. 3Sum 16. 3Sum Closest 17. Letter Combinations of a Phone Number 18. 4Sum 19. Remove Nth Node From End of List 20. Valid Parentheses 21. Merge Two Sorted Lists 22. Generate Parentheses 23. Swap Nodes in Pairs 24. Reverse Nodes in k-Group 25. Remove Duplicates from Sorted Array 26. Remove Element 27. Implement strStr() 28. Divide Two Integers 29. Substring with Concatenation of All Words 30. Next Permutation 31. Longest Valid Parentheses 32. Search in Rotated Sorted Array 33. Search for a Range 34. Find First and Last Position of Element in Sorted Array 35. Valid Sudoku 36. Sudoku Solver 37. Count and Say 38. Combination Sum 39. Combination Sum II 40. First Missing Positive 41. Trapping Rain Water 42. Jump Game 43. Merge Intervals 44. Insert Interval 45. Unique Paths 46. Minimum Path Sum 47. Climbing Stairs 48. Permutations 49. Permutations II 50. Rotate Image 51. Group Anagrams 52. Pow(x, n) 53. Maximum Subarray 54. Spiral Matrix 55. Jump Game II 56. Merge k Sorted Lists 57. Insertion Sort List 58. Sort List 59. Largest Rectangle in Histogram 60. Valid Number 61. Word Search 62. Minimum Window Substring 63. Unique Binary Search Trees 64. Unique Binary Search Trees II 65. Interleaving String 66. Maximum Product Subarray 67. Binary Tree Inorder Traversal 68. Binary Tree Preorder Traversal 69. Binary Tree Postorder Traversal 70. Flatten Binary Tree to Linked List 71. Construct Binary Tree from Preorder and Inorder Traversal 72. Construct Binary Tree from Inorder and Postorder Traversal 73. Binary Tree Level Order Traversal 74. Binary Tree Zigzag Level Order Traversal 75. Convert Sorted Array to Binary Search Tree 76. Convert Sorted List to Binary Search Tree 77. Recover Binary Search Tree 78. Sum Root to Leaf Numbers 79. Path Sum 80. Path Sum II 81. Binary Tree Maximum Path Sum 82. Populating Next Right Pointers in Each Node 83. Populating Next Right Pointers in Each Node II 84. Reverse Linked List 85. Reverse Linked List II 86. Partition List 87. Rotate List 88. Remove Duplicates from Sorted List 89. Remove Duplicates from Sorted List II 90. Intersection of Two Linked Lists 91. Linked List Cycle 92. Linked List Cycle II 93. Reorder List 94. Binary Tree Upside Down 95. Binary Tree Right Side View 96. Palindrome Linked List 97. Convert Binary Search Tree to Sorted Doubly Linked List 98. Lowest Common Ancestor of a Binary Tree 99. Lowest Common Ancestor of a Binary Search Tree 100. Binary Tree Level Order Traversal II
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值