csv数据,已区分训练集和验证集,需要用r语言建立随机森林回归模型,计算模型精度,包括训练集和验证集的r方、mae、rmse

本文介绍如何利用R语言处理csv数据,构建随机森林回归模型,并对训练集和验证集进行精度评估,包括计算r方、平均绝对误差(MAE)和均方根误差(RMSE)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

csv数据,已区分训练集和验证集,需要用r语言建立随机森林回归模型,计算模型精度,包括训练集和验证集的r方、mae、rmse

#读取训练集
train <- read.csv("train.csv")
#读取测试集
test <- read.csv("test.csv")
library(randomForest)
### 建立随机森林
model <- rand
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值