演员评论家算法

该博客通过PaddlePaddle库实现了Deep Q-Network (DQN)算法,应用于CartPole-v0环境的强化学习任务。代码详细展示了Actor和Critic网络的构建,以及训练过程,包括奖励计算、回报计算和损失函数。经过多次迭代训练,智能体逐渐学会了稳定杆子的策略,得分逐渐提高。
部署运行你感兴趣的模型镜像
import gym, os
from itertools import count
import paddle
import paddle.nn as nn
import paddle.optimizer as optim
import paddle.nn.functional as F
from paddle.distribution import Categorical

device = paddle.get_device()
env = gym.make("CartPole-v0")  ### 或者 env = gym.make("CartPole-v0").unwrapped 开启无锁定环境训练

state_size = env.observation_space.shape[0]
action_size = env.action_space.n
lr = 0.001

class Actor(nn.Layer):
    def __init__(self, state_size, action_size):
        super(Actor, self).__init__()
        self.state_size = state_size
        self.action_size = action_size
        self.linear1 = nn.Linear(self.state_size, 128)
        self.linear2 = nn.Linear(128, 256)
        self.linear3 = nn.Linear(256, self.action_size)

    def forward(self, state):
        output = F.relu(self.linear1(state))
        output = F.relu(self.linear2(output))
        output = self.linear3(output)
        distribution = Categorical(F.softmax(output, axis=-1))
        return distribution


class Critic(nn.Layer):
    def __init__(self, state_size, action_size):
        super(Critic, self).__init__()
        self.state_size = state_size
        self.action_size = action_size
        self.linear1 = nn.Linear(self.state_size, 128)
        self.linear2 = nn.Linear(128, 256)
        self.linear3 = nn.Linear(256, 1)

    def forward(self, state):
        output = F.relu(self.linear1(state))
        output = F.relu(self.linear2(output))
        value = self.linear3(output)
        return value

def compute_returns(next_value, rewards, masks, gamma=0.99):
    R = next_value
    returns = []
    for step in reversed(range(len(rewards))):
        R = rewards[step] + gamma * R * masks[step]
        returns.insert(0, R)
    return returns


def trainIters(actor, critic, n_iters):
    optimizerA = optim.Adam(lr, parameters=actor.parameters())
    optimizerC = optim.Adam(lr, parameters=critic.parameters())
    for iter in range(n_iters):
        state = env.reset()
        log_probs = []
        values = []
        rewards = []
        masks = []
        entropy = 0
        env.reset()

        for i in count():
            # env.render()
            state = paddle.to_tensor(state,dtype="float32",place=device)
            dist, value = actor(state), critic(state)

            action = dist.sample([1])
            next_state, reward, done, _ = env.step(action.cpu().squeeze(0).numpy())

            log_prob = dist.log_prob(action);
            # entropy += dist.entropy().mean()

            log_probs.append(log_prob)
            values.append(value)
            rewards.append(paddle.to_tensor([reward], dtype="float32", place=device))
            masks.append(paddle.to_tensor([1-done], dtype="float32", place=device))

            state = next_state

            if done:
                if iter % 10 == 0:
                    print('Iteration: {}, Score: {}'.format(iter, i))
                break


        next_state = paddle.to_tensor(next_state, dtype="float32", place=device)
        next_value = critic(next_state)
        returns = compute_returns(next_value, rewards, masks)

        log_probs = paddle.concat(log_probs)
        returns = paddle.concat(returns).detach()
        values = paddle.concat(values)

        advantage = returns - values

        actor_loss = -(log_probs * advantage.detach()).mean()
        critic_loss = advantage.pow(2).mean()

        optimizerA.clear_grad()
        optimizerC.clear_grad()
        actor_loss.backward()
        critic_loss.backward()
        optimizerA.step()
        optimizerC.step()
    paddle.save(actor.state_dict(), 'model/actor.pdparams')
    paddle.save(critic.state_dict(), 'model/critic.pdparams')
    env.close()



if __name__ == '__main__':
    if os.path.exists('model/actor.pdparams'):
        actor = Actor(state_size, action_size)
        model_state_dict  = paddle.load('model/actor.pdparams')
        actor.set_state_dict(model_state_dict )
        print('Actor Model loaded')
    else:
        actor = Actor(state_size, action_size)
    if os.path.exists('model/critic.pdparams'):
        critic = Critic(state_size, action_size)
        model_state_dict  = paddle.load('model/critic.pdparams')
        critic.set_state_dict(model_state_dict )
        print('Critic Model loaded')
    else:
        critic = Critic(state_size, action_size)
    trainIters(actor, critic, n_iters=201)

Iteration: 0, Score: 15
Iteration: 10, Score: 26
Iteration: 20, Score: 10
Iteration: 30, Score: 15
Iteration: 40, Score: 21
Iteration: 50, Score: 18
Iteration: 60, Score: 14
Iteration: 70, Score: 14
Iteration: 80, Score: 30
Iteration: 90, Score: 28
Iteration: 100, Score: 52
Iteration: 110, Score: 108
Iteration: 120, Score: 186
Iteration: 130, Score: 199
Iteration: 140, Score: 199
Iteration: 150, Score: 199
Iteration: 160, Score: 199
Iteration: 170, Score: 199
Iteration: 180, Score: 123
Iteration: 190, Score: 199
Iteration: 200, Score: 199

进程已结束,退出代码0

您可能感兴趣的与本文相关的镜像

PaddlePaddle-v3.3

PaddlePaddle-v3.3

PaddlePaddle

PaddlePaddle是由百度自主研发的深度学习平台,自 2016 年开源以来已广泛应用于工业界。作为一个全面的深度学习生态系统,它提供了核心框架、模型库、开发工具包等完整解决方案。目前已服务超过 2185 万开发者,67 万企业,产生了 110 万个模型

Keras演员评论家算法是一种强化学习算法,结合了演员-评论家架构和Keras库。演员-评论家算法是一种基于值函数和策略函数的强化学习方法,用于解决连续动作空间的问题。在这种算法中,演员网络用于生成动作,评论家网络用于估计动作的价值。 具体来说,Keras演员评论家算法使用目标模型通过Polyak平均进行权重转移。演员网络和评论家网络在演员评论家网络中使用目标模型。采用Bellman方程来描述每对<状态,动作>的最佳Q值函数。 在Keras演员评论家算法实现中,首先定义了一个代理类(agent),其中包含了演员网络和评论家网络。演员网络负责生成动作,评论家网络负责估计动作的价值。代理类中的act方法使用分布来进行动作选择,其中包括了动作的概率计算和使用贝叶斯分布采样动作的过程。 总结起来,Keras演员评论家算法是一种使用演员-评论家架构和Keras库实现的强化学习算法,用于解决连续动作空间的问题。它包含了演员网络和评论家网络,并使用目标模型和Bellman方程来优化动作选择和动作价值的估计。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [DDPG_TF2:KerasTensorflow 2中的简单深度确定性策略梯度算法(DDPG)实现](https://download.youkuaiyun.com/download/weixin_42160424/15246126)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [reinforcement-learning-kr-v2:[使用Python和Keras进行强化学习] TensorFlow 2.0修订示例](https://download.youkuaiyun.com/download/weixin_42116701/17221170)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [近端策略优化算法(PPO):RL最经典的博弈对抗算法之一「AI核心算法」](https://blog.youkuaiyun.com/u9Oo9xkM169LeLDR84/article/details/110601602)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值