Codeforces Round #439 (Div. 2) - B. The Eternal Immortality(规律)

本文介绍了一个高效算法来求解两个阶乘之间的商的个位数,特别关注于当输入为较大整数时如何快速找到答案。通过避免冗余计算并利用数学性质,该算法能在短时间内得出正确结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. The Eternal Immortality
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Even if the world is full of counterfeits, I still regard it as wonderful.

Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this.

The phoenix has a rather long lifespan, and reincarnates itself once every a! years. Here a! denotes the factorial of integer a, that is, a! = 1 × 2 × ... × a. Specifically, 0! = 1.

Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of b! years, that is, . Note that when b ≥ a this value is always integer.

As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge.

Input

The first and only line of input contains two space-separated integers a and b (0 ≤ a ≤ b ≤ 1018).

Output

Output one line containing a single decimal digit — the last digit of the value that interests Koyomi.

Examples
input
2 4
output
2
input
0 10
output
0
input
107 109
output
2
Note

In the first example, the last digit of  is 2;

In the second example, the last digit of  is 0;

In the third example, the last digit of  is 2.


题意:

求一个阶乘除以阶乘的个位数。

POINT:

这种题肯定不是暴力去做。一开始想找循环节,仔细一想还是很慢。

只要乘以了末尾有0的数,那么答案肯定是0,其他就一个for循环,顶多循环9次。

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include<algorithm>
using namespace std;
#define LL long long
const int maxn = 2222;
int main()
{
    LL ans=1;
    LL a,b;
    scanf("%lld %lld",&a,&b);
    for(LL i=a+1;i<=b;i++){
        if(i%10==0){
            ans=0;
            break;
        }
        else{
            ans=ans*i%10;
        }
    }
    printf("%lld\n",ans);

}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值