Max Sum of Max-K-sub-sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8433 Accepted Submission(s): 3095
Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4 6 3 6 -1 2 -6 5 -5 6 4 6 -1 2 -6 5 -5 6 3 -1 2 -6 5 -5 6 6 6 -1 -1 -1 -1 -1 -1
Sample Output
7 1 3 7 1 3 7 6 2 -1 1 1
Author
shǎ崽@HDU
Source
题意:
队列组成的圆,求长度不大于k的连续子串最大和,输出和 左端点l 右端点r。
POINT:
首位相连只要在n后面在加k个数字就可以了。先搞一个sum数组来保存前缀和。
若以l作为左端点来找最大的答案:
ans[l]=max{sum[l+i-1]}-sum[l-1] (0<i<=k).
max{sum[l+i-1]} (0<i<=k) 这个部分可以用单调队列优化。
从1到n遍历左端点就可以了。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <queue>
using namespace std;
const int N = 100100+4;
const int INF=0x3f3f3f3f;
struct node
{
int x,y;
}a[N<<1];
int sum[N<<1];
int n,k;
int ansmax,ansl,ansr;
deque<int> q;
void work()
{
for(int i=1;i<k;i++)
{
while(!q.empty()&&sum[i]>sum[q.back()]) q.pop_back();
q.push_back(i);
}
for(int i=1;i<=n;i++)
{
while(!q.empty()&&sum[i+k-1]>sum[q.back()]) q.pop_back();
while(!q.empty()&&q.front()<i) q.pop_front();
q.push_back(i+k-1);
if(ansmax<sum[q.front()]-sum[i-1])
{
ansmax=sum[q.front()]-sum[i-1];
ansr=q.front();
ansl=i;
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
// init();
ansmax=-INF;
scanf("%d %d",&n,&k);
while(!q.empty()) q.pop_back();
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i].x);
a[i].y=i;
sum[i]=sum[i-1]+a[i].x;
}
for(int i=n+1;i<=n+k;i++)
{
a[i]=a[i-n];
a[i].y=i;
sum[i]=sum[i-1]+a[i].x;
}
work();
if(ansr>n) ansr-=n;
printf("%d %d %d\n",ansmax,ansl,ansr);
}
}