The All-purpose Zero
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2078 Accepted Submission(s): 974
Problem Description
?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.
Input
The first line contains an interger T,denoting the number of the test cases.(T <= 10)
For each case,the first line contains an interger n,which is the length of the array s.
The next line contains n intergers separated by a single space, denote each number in S.
For each case,the first line contains an interger n,which is the length of the array s.
The next line contains n intergers separated by a single space, denote each number in S.
Output
For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.
Sample Input
2 7 2 0 2 1 2 0 5 6 1 2 3 3 0 0
Sample Output
Case #1: 5 Case #2: 5HintIn the first case,you can change the second 0 to 3.So the longest increasing subsequence is 0 1 2 3 5.
Author
FZU
Source
2016 Multi-University Training Contest 4
题意:
0可以变成任何数,变化之后求LIS
point:
因为0是一定要用的。
变化原数组,把0移除,每个数前面有几个0就减几。因为两个数之间中间有0,0会补差。例如 1 0 2 ,原数组 2 这个数前面有个0,用了他之后,2-1>1成立才可以用。所以2这个位置至少要3才可以。
答案为 数组LIS+zero的个数。
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int a[100020];
int f[100020];
int n;
int main()
{
int T;
scanf("%d",&T);
int p=0;
while(T--)
{
int ans,cnt;
ans=cnt=1;
int num,zero;
num=zero=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
if(x==0)
{
zero++;
}
else
{
a[++num]=x-zero;
}
}
memset(f,0,sizeof f);
f[1]=a[1];
for(int i=2;i<=num;i++)
{
if(a[i]>f[cnt]) f[++cnt]=a[i];
else
{
f[lower_bound(f+1,f+1+cnt,a[i])-f]=a[i];
}
}
if(zero==n) cnt=0;//cnt=1会影响答案。
printf("Case #%d: %d\n",++p,cnt+zero);
}
}