HDU 5773 The All-purpose Zero (LIS变形)

探讨一种特殊场景下的最长递增子序列(LIS)问题解决方法,其中序列中的零元素可变为任意整数,旨在通过巧妙地利用零元素来最大化递增子序列的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The All-purpose Zero

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2078    Accepted Submission(s): 974


Problem Description
?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.
 

Input
The first line contains an interger T,denoting the number of the test cases.(T <= 10)
For each case,the first line contains an interger n,which is the length of the array s.
The next line contains n intergers separated by a single space, denote each number in S.
 

Output
For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.
 

Sample Input
  
2 7 2 0 2 1 2 0 5 6 1 2 3 3 0 0
 

Sample Output
  
Case #1: 5 Case #2: 5
Hint
In the first case,you can change the second 0 to 3.So the longest increasing subsequence is 0 1 2 3 5.
 

Author
FZU
 

Source

2016 Multi-University Training Contest 4


题意:

0可以变成任何数,变化之后求LIS


point:

因为0是一定要用的。

变化原数组,把0移除,每个数前面有几个0就减几。因为两个数之间中间有0,0会补差。例如 1 0 2 ,原数组 2 这个数前面有个0,用了他之后,2-1>1成立才可以用。所以2这个位置至少要3才可以。

答案为 数组LIS+zero的个数。


#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int a[100020];
int f[100020];
int n;
int main()
{
    int T;
    scanf("%d",&T);
    int p=0;
    while(T--)
    {
        int ans,cnt;
        ans=cnt=1;
        int num,zero;
        num=zero=0;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            int x;
            scanf("%d",&x);
            if(x==0)
            {
                zero++;
            }
            else
            {
                a[++num]=x-zero;
            }
        }
        memset(f,0,sizeof f);
        f[1]=a[1];
        for(int i=2;i<=num;i++)
        {
            if(a[i]>f[cnt]) f[++cnt]=a[i];
            else
            {
                f[lower_bound(f+1,f+1+cnt,a[i])-f]=a[i];
            }
        }
        if(zero==n) cnt=0;//cnt=1会影响答案。
         printf("Case #%d: %d\n",++p,cnt+zero);
    }

}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值