Codeforces 1144E

本文解析了Codeforces比赛中的E题,题目要求找到字典序介于两个给定字符串之间的中间字符串。通过将字符串转化为26进制数,进行加法和除法模拟运算,最终得出答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

http://codeforces.com/contest/1144/problem/E

题意

有2个2e5的字符串 s s s t t t,长度都为 k k k s s s的字典序小于 t t t

求长度为 k ​ k​ k的,字典序不小于 s ​ s​ s且不大于 t ​ t​ t的字符串中,按字典序排列的中间的字符串。

如: s s s = az, t t t = bf,则位于 s s s t t t中间的是 az, ba, bb, bc, bd, be, bf,所以答案是bc。

题目保证字典序不小于 s s s且不大于 t t t的字符串个数是奇数。

思路

如果 s s s L L L t t t R R R,那么答案就是 ( L + R ) / 2 (L + R) / 2 L+R)/2,所以可以把字符串转化成26进制的数,a-z分别表示0-25。

先把两个字符串加起来,模拟加法。因为会爆long long,只能用数组模拟。

然后把结果除以二,模拟除法。

模拟加法注意进位,模拟除法注意借位。

AC代码
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <set>
#include <vector>
#include <queue>
#include <stack>
#include <map>
using namespace std;
#define ll long long 
const int maxn = 200010;

char s[maxn], t[maxn];
int a[maxn];

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    int n;
    scanf("%d", &n);
    scanf("%s%s", s, t);
    for(int i = n - 1; i >= 0; i--) {
        a[i + 1] += (s[i] - 'a') + (t[i] - 'a'); //从a[1]开始存,a[0]可能需要进位
        a[i] += a[i + 1] / 26;                  //给高位进位
        a[i + 1] %= 26;
    }
    if(a[0] > 0)
        a[1] += 26;
    for(int i = 1; i <= n; i++) {
        printf("%c", a[i] / 2 + 'a');
        if(a[i] % 2 != 0)
            a[i + 1] += 26;
    }
    return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值