机器学习:线性模型学习总结(3):基于PyTorch的线性模型

本文详细介绍了如何使用PyTorch构建线性回归和逻辑回归模型,包括数据预处理、模型定义、训练过程以及评估指标。通过实例展示了线性回归在纽约市出租车费用预测和逻辑回归在泰坦尼克号生存预测上的应用,同时提供了回归和分类的评价标准,如MSE、MAE、R2-Score、Accuracy、Precision等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于周志华老师的《机器学习》、上一篇学习笔记以及网络的其他资料,对线性模型的这一部分内容进行一个总结。上接:机器学习:线性模型学习总结(2)

学习时间:2022.04.19~2022.04.20

1. 数据预处理

和用Sk-Learn一样,也用来一个专门处理表格数据的函数,不过主要还是使用之前的流程:

    # 数据预处理
    df_x = mango_processing(df_x).astype(float)
    df_y = df_y.astype(float)

    # 划分训练集和测试集
    tr_x, te_x, tr_y, te_y = train_test_split(df_x, df_y, test_size=0.2, random_state=42)

    # 全部转换成张量
    train_tensor_x, test_tensor_x, train_tensor_y, test_tensor_y = map(torch.tensor, (np.array(tr_x), np.array(te_x), np.array(tr_y), np.array(te_y)))

    # 将标签转为long或float格式(根据损失函数定):
    # train_tensor_y = train_tensor_y.squeeze(-1).long()
    # test_tensor_y = test_tensor_y.squeeze(-1).long()
    train_tensor_y = train_tensor_y.squeeze(-1).float()
    test_tensor_y = test_tensor_y.squeeze(-1).float()

    # 返回测试集和训练集
    return train_tensor_x, test_tensor_x, train_tensor_y, test_tensor_y

2. PyTorch线性回归

因为全连接层不加激活函数,就只相当于加权求和,所以就可以当做线性回归:

class LinearModel(nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.liner = nn.Linear(14, 1)

    def forward(self, x):
        x = x.to(torch.float32)
        x = self.liner(x)
        x = x.squeeze(-1)  # 线性回归的损失函数MSELoss要求输入维数和目标维数一致,因此做了个降维
        return x

3. PyTorch线性分类

在最后加一个Sigmoid函数实现逻辑回归分类:

class LinearModel(nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.liner = torch.nn.Linear(24, 2)

    def forward(self, x):
        x = x.to(torch.float32)
        x = self.liner(x)
        x = torch.sigmoid(x)
        return x

4. 回归评价

这里学习了TorchMetrics这个包,直接用来调用评价回归结果,老样子,还是先写了一个函数:

    # 计算均方误差MSE
    mean_squared_error = torchmetrics.MeanSquaredError()
    mean_squared_error(y_pred, y_true)
    mse = mean_squared_error.compute()
    print('MSE:', mse, end='; ')

    # 计算平均绝对误差MAE
    mean_absolute_error = torchmetrics.MeanAbsoluteError()
    mean_absolute_error(y_pred, y_true)
    mae = mean_absolute_error.compute()
    print('MAE:', mae, end='; ')

    # 计算平均绝对百分比误差MAPE
    mean_absolute_percentage_error = torchmetrics.MeanAbsolutePercentageError()
    mean_abs
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新四石路打卤面

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值